scispace - formally typeset
Search or ask a question
Book

Adaptation in natural and artificial systems

01 Jan 1975-
TL;DR: Names of founding work in the area of Adaptation and modiication, which aims to mimic biological optimization, and some (Non-GA) branches of AI.
Abstract: Name of founding work in the area. Adaptation is key to survival and evolution. Evolution implicitly optimizes organisims. AI wants to mimic biological optimization { Survival of the ttest { Exploration and exploitation { Niche nding { Robust across changing environments (Mammals v. Dinos) { Self-regulation,-repair and-reproduction 2 Artiicial Inteligence Some deenitions { "Making computers do what they do in the movies" { "Making computers do what humans (currently) do best" { "Giving computers common sense; letting them make simple deci-sions" (do as I want, not what I say) { "Anything too new to be pidgeonholed" Adaptation and modiication is root of intelligence Some (Non-GA) branches of AI: { Expert Systems (Rule based deduction)

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
06 Aug 2002
TL;DR: A concept for the optimization of nonlinear functions using particle swarm methodology is introduced, and the evolution of several paradigms is outlined, and an implementation of one of the paradigm is discussed.
Abstract: A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications, including nonlinear function optimization and neural network training, are proposed. The relationships between particle swarm optimization and both artificial life and genetic algorithms are described.

35,104 citations

Journal ArticleDOI
TL;DR: AutoDock Vina achieves an approximately two orders of magnitude speed‐up compared with the molecular docking software previously developed in the lab, while also significantly improving the accuracy of the binding mode predictions, judging by tests on the training set used in AutoDock 4 development.
Abstract: AutoDock Vina, a new program for molecular docking and virtual screening, is presented. AutoDock Vina achieves an approximately two orders of magnitude speed-up compared with the molecular docking software previously developed in our lab (AutoDock 4), while also significantly improving the accuracy of the binding mode predictions, judging by our tests on the training set used in AutoDock 4 development. Further speed-up is achieved from parallelism, by using multithreading on multicore machines. AutoDock Vina automatically calculates the grid maps and clusters the results in a way transparent to the user.

20,059 citations

Journal ArticleDOI
TL;DR: A snapshot of particle swarming from the authors’ perspective, including variations in the algorithm, current and ongoing research, applications and open problems, is included.
Abstract: A concept for the optimization of nonlinear functions using particle swarm methodology is introduced The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed Benchmark testing of the paradigm is described, and applications, including nonlinear function optimization and neural network training, are proposed The relationships between particle swarm optimization and both artificial life and genetic algorithms are described

18,439 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the relation between the exploration of new possibilities and the exploitation of old certainties in organizational learning and examine some complications in allocating resources between the two, particularly those introduced by the distribution of costs and benefits across time and space.
Abstract: This paper considers the relation between the exploration of new possibilities and the exploitation of old certainties in organizational learning. It examines some complications in allocating resources between the two, particularly those introduced by the distribution of costs and benefits across time and space, and the effects of ecological interaction. Two general situations involving the development and use of knowledge in organizations are modeled. The first is the case of mutual learning between members of an organization and an organizational code. The second is the case of learning and competitive advantage in competition for primacy. The paper develops an argument that adaptive processes, by refining exploitation more rapidly than exploration, are likely to become effective in the short run but self-destructive in the long run. The possibility that certain common organizational practices ameliorate that tendency is assessed.

16,377 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations


Cites background from "Adaptation in natural and artificia..."

  • ...RL NNs can also be evolved through Evolutionary Algorithms (EAs) (Rechenberg, 1971; Schwefel, 1974; Holland, 1975; Fogel et al., 1966; Goldberg, 1989) in a series of trials....

    [...]

  • ...RL NNs can also be evolved through Evolutionary Algorithms (EAs) (Fogel, Owens, & Walsh, 1966; Goldberg, 1989; Holland, 1975; Rechenberg, 1971; Schwefel, 1974) in a series of trials....

    [...]