scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Adaptive Federated Learning in Resource Constrained Edge Computing Systems

TL;DR: In this paper, the authors consider the problem of learning model parameters from data distributed across multiple edge nodes, without sending raw data to a centralized place, and propose a control algorithm that determines the best tradeoff between local update and global parameter aggregation to minimize the loss function under a given resource budget.
Abstract: Emerging technologies and applications including Internet of Things, social networking, and crowd-sourcing generate large amounts of data at the network edge. Machine learning models are often built from the collected data, to enable the detection, classification, and prediction of future events. Due to bandwidth, storage, and privacy concerns, it is often impractical to send all the data to a centralized location. In this paper, we consider the problem of learning model parameters from data distributed across multiple edge nodes, without sending raw data to a centralized place. Our focus is on a generic class of machine learning models that are trained using gradient-descent-based approaches. We analyze the convergence bound of distributed gradient descent from a theoretical point of view, based on which we propose a control algorithm that determines the best tradeoff between local update and global parameter aggregation to minimize the loss function under a given resource budget. The performance of the proposed algorithm is evaluated via extensive experiments with real datasets, both on a networked prototype system and in a larger-scale simulated environment. The experimentation results show that our proposed approach performs near to the optimum with various machine learning models and different data distributions.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a survey of federated learning (FL) topics and research fields is presented, including core system models and designs, application areas, privacy and security, and resource management.
Abstract: Driven by privacy concerns and the visions of deep learning, the last four years have witnessed a paradigm shift in the applicability mechanism of machine learning (ML). An emerging model, called federated learning (FL), is rising above both centralized systems and on-site analysis, to be a new fashioned design for ML implementation. It is a privacy-preserving decentralized approach, which keeps raw data on devices and involves local ML training while eliminating data communication overhead. A federation of the learned and shared models is then performed on a central server to aggregate and share the built knowledge among participants. This article starts by examining and comparing different ML-based deployment architectures, followed by in-depth and in-breadth investigation on FL. Compared to the existing reviews in the field, we provide in this survey a new classification of FL topics and research fields based on thorough analysis of the main technical challenges and current related work. In this context, we elaborate comprehensive taxonomies covering various challenging aspects, contributions, and trends in the literature, including core system models and designs, application areas, privacy and security, and resource management. Furthermore, we discuss important challenges and open research directions toward more robust FL systems.

252 citations

Journal ArticleDOI
TL;DR: This work proposes a federated deep-reinforcement-learning-based cooperative edge caching (FADE) framework that enables base stations to cooperatively learn a shared predictive model, and proves the expectation convergence of FADE.
Abstract: Edge caching is an emerging technology for addressing massive content access in mobile networks to support rapidly growing Internet-of-Things (IoT) services and applications. However, most current optimization-based methods lack a self-adaptive ability in dynamic environments. To tackle these challenges, current learning-based approaches are generally proposed in a centralized way. However, network resources may be overconsumed during the training and data transmission process. To address the complex and dynamic control issues, we propose a federated deep-reinforcement-learning-based cooperative edge caching (FADE) framework. FADE enables base stations (BSs) to cooperatively learn a shared predictive model by considering the first-round training parameters of the BSs as the initial input of the local training, and then uploads near-optimal local parameters to the BSs to participate in the next round of global training. Furthermore, we prove the expectation convergence of FADE. Trace-driven simulation results demonstrate the effectiveness of the proposed FADE framework on reducing the performance loss and average delay, offloading backhaul traffic, and improving the hit rate.

252 citations

Journal ArticleDOI
TL;DR: This survey provides a comprehensive tutorial on federated learning and its associated concepts, technologies and learning approaches, and designs a three-level classification scheme that first categorizes the Federated learning literature based on the high-level challenge that they tackle, and classify each high- level challenge into a set of specific low-level challenges to foster a better understanding of the topic.
Abstract: The communication and networking field is hungry for machine learning decision-making solutions to replace the traditional model-driven approaches that proved to be not rich enough for seizing the ever-growing complexity and heterogeneity of the modern systems in the field. Traditional machine learning solutions assume the existence of (cloud-based) central entities that are in charge of processing the data. Nonetheless, the difficulty of accessing private data, together with the high cost of transmitting raw data to the central entity gave rise to a decentralized machine learning approach called Federated Learning . The main idea of federated learning is to perform an on-device collaborative training of a single machine learning model without having to share the raw training data with any third-party entity. Although few survey articles on federated learning already exist in the literature, the motivation of this survey stems from three essential observations. The first one is the lack of a fine-grained multi-level classification of the federated learning literature, where the existing surveys base their classification on only one criterion or aspect. The second observation is that the existing surveys focus only on some common challenges, but disregard other essential aspects such as reliable client selection, resource management and training service pricing. The third observation is the lack of explicit and straightforward directives for researchers to help them design future federated learning solutions that overcome the state-of-the-art research gaps. To address these points, we first provide a comprehensive tutorial on federated learning and its associated concepts, technologies and learning approaches. We then survey and highlight the applications and future directions of federated learning in the domain of communication and networking. Thereafter, we design a three-level classification scheme that first categorizes the federated learning literature based on the high-level challenge that they tackle. Then, we classify each high-level challenge into a set of specific low-level challenges to foster a better understanding of the topic. Finally, we provide, within each low-level challenge, a fine-grained classification based on the technique used to address this particular challenge. For each category of high-level challenges, we provide a set of desirable criteria and future research directions that are aimed to help the research community design innovative and efficient future solutions. To the best of our knowledge, our survey is the most comprehensive in terms of challenges and techniques it covers and the most fine-grained in terms of the multi-level classification scheme it presents.

252 citations

Journal ArticleDOI
TL;DR: This article incorporates local differential privacy into federated learning for protecting the privacy of updated local models and proposes a random distributed update scheme to get rid of the security threats led by a centralized curator.
Abstract: Driven by technologies such as mobile edge computing and 5G, recent years have witnessed the rapid development of urban informatics, where a large amount of data is generated. To cope with the growing data, artificial intelligence algorithms have been widely exploited. Federated learning is a promising paradigm for distributed edge computing, which enables edge nodes to train models locally without transmitting their data to a server. However, the security and privacy concerns of federated learning hinder its wide deployment in urban applications such as vehicular networks. In this article, we propose a differentially private asynchronous federated learning scheme for resource sharing in vehicular networks. To build a secure and robust federated learning scheme, we incorporate local differential privacy into federated learning for protecting the privacy of updated local models. We further propose a random distributed update scheme to get rid of the security threats led by a centralized curator. Moreover, we perform the convergence boosting in our proposed scheme by updates verification and weighted aggregation. We evaluate our scheme on three real-world datasets. Numerical results show the high accuracy and efficiency of our proposed scheme, whereas preserve the data privacy.

248 citations

Journal ArticleDOI
TL;DR: Several main issues in FLchain design are identified, including communication cost, resource allocation, incentive mechanism, security and privacy protection, and the applications of FLchain in popular MEC domains, such as edge data sharing, edge content caching and edge crowdsensing are investigated.
Abstract: Mobile-edge computing (MEC) has been envisioned as a promising paradigm to handle the massive volume of data generated from ubiquitous mobile devices for enabling intelligent services with the help of artificial intelligence (AI). Traditionally, AI techniques often require centralized data collection and training in a single entity, e.g., an MEC server, which is now becoming a weak point due to data privacy concerns and high overhead of raw data communications. In this context, federated learning (FL) has been proposed to provide collaborative data training solutions, by coordinating multiple mobile devices to train a shared AI model without directly exposing their underlying data, which enjoys considerable privacy enhancement. To improve the security and scalability of FL implementation, blockchain as a ledger technology is attractive for realizing decentralized FL training without the need for any central server. Particularly, the integration of FL and blockchain leads to a new paradigm, called FLchain , which potentially transforms intelligent MEC networks into decentralized, secure, and privacy-enhancing systems. This article presents an overview of the fundamental concepts and explores the opportunities of FLchain in MEC networks. We identify several main issues in FLchain design, including communication cost, resource allocation, incentive mechanism, security and privacy protection. The key solutions and the lessons learned along with the outlooks are also discussed. Then, we investigate the applications of FLchain in popular MEC domains, such as edge data sharing, edge content caching and edge crowdsensing. Finally, important research challenges and future directions are also highlighted.

238 citations