scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates,

01 Oct 1997-Discrete and Computational Geometry (Springer-Verlag)-Vol. 18, Iss: 3, pp 305-363
TL;DR: This article offers fast software-level algorithms for exact addition and multiplication of arbitrary precision floating-point values and proposes a technique for adaptive precision arithmetic that can often speed these algorithms when they are used to perform multiprecision calculations that do not always require exact arithmetic, but must satisfy some error bound.
Abstract: Exact computer arithmetic has a variety of uses, including the robust implementation of geometric algorithms. This article has three purposes. The first is to offer fast software-level algorithms for exact addition and multiplication of arbitrary precision floating-point values. The second is to propose a technique for adaptive precision arithmetic that can often speed these algorithms when they are used to perform multiprecision calculations that do not always require exact arithmetic, but must satisfy some error bound. The third is to use these techniques to develop implementations of several common geometric calculations whose required degree of accuracy depends on their inputs. These robust geometric predicates are adaptive; their running time depends on the degree of uncertainty of the result, and is usually small.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a moving unstructured mesh defined by the Voronoi tessellation of a set of discrete points is used to solve the hyperbolic conservation laws of ideal hydrodynamics with a finite volume approach, based on a second-order unsplit Godunov scheme with an exact Riemann solver.
Abstract: Hydrodynamic cosmological simulations at present usually employ either the Lagrangian smoothed particle hydrodynamics (SPH) technique or Eulerian hydrodynamics on a Cartesian mesh with (optional) adaptive mesh refinement (AMR). Both of these methods have disadvantages that negatively impact their accuracy in certain situations, for example the suppression of fluid instabilities in the case of SPH, and the lack of Galilean invariance and the presence of overmixing in the case of AMR. We here propose a novel scheme which largely eliminates these weaknesses. It is based on a moving unstructured mesh defined by the Voronoi tessellation of a set of discrete points. The mesh is used to solve the hyperbolic conservation laws of ideal hydrodynamics with a finite-volume approach, based on a second-order unsplit Godunov scheme with an exact Riemann solver. The mesh-generating points can in principle be moved arbitrarily. If they are chosen to be stationary, the scheme is equivalent to an ordinary Eulerian method with second-order accuracy. If they instead move with the velocity of the local flow, one obtains a Lagrangian formulation of continuum hydrodynamics that does not suffer from the mesh distortion limitations inherent in other mesh-based Lagrangian schemes. In this mode, our new method is fully Galilean invariant, unlike ordinary Eulerian codes, a property that is of significant importance for cosmological simulations where highly supersonic bulk flows are common. In addition, the new scheme can adjust its spatial resolution automatically and continuously, and hence inherits the principal advantage of SPH for simulations of cosmological structure growth. The high accuracy of Eulerian methods in the treatment of shocks is also retained, while the treatment of contact discontinuities improves. We discuss how this approach is implemented in our new code arepo, both in 2D and in 3D, and is parallelized for distributed memory computers. We also discuss techniques for adaptive refinement or de-refinement of the unstructured mesh. We introduce an individual time-step approach for finite-volume hydrodynamics, and present a high-accuracy treatment of self-gravity for the gas that allows the new method to be seamlessly combined with a high-resolution treatment of collisionless dark matter. We use a suite of test problems to examine the performance of the new code and argue that the hydrodynamic moving-mesh scheme proposed here provides an attractive and competitive alternative to current SPH and Eulerian techniques.

1,778 citations

Journal ArticleDOI
TL;DR: In this article, an extended finite element method (X-FEM) for three-dimensional crack modeling is described, where a discontinuous function and two-dimensional asymptotic crack-tip displacement fields are added to the finite element approximation to account for the crack using the notion of partition of unity.
Abstract: An extended finite element method (X-FEM) for three-dimensional crack modelling is described. A discontinuous function and the two-dimensional asymptotic crack-tip displacement fields are added to the finite element approximation to account for the crack using the notion of partition of unity. This enables the domain to be modelled by finite elements with no explicit meshing of the crack surfaces. Computational geometry issues associated with the representation of the crack and the enrichment of the finite element approximation are discussed. Stress intensity factors (SIFs) for planar three-dimensional cracks are presented, which are found to be in good agreement with benchmark solutions. Copyright © 2000 John Wiley & Sons, Ltd.

1,141 citations


Cites methods from "Adaptive Precision Floating-Point A..."

  • ...Eorts have been made to develop robust geometric predicates [ 26 ], which are especially important in the development of algorithms for the Delaunay tessellation and Voronoi diagram of a point set....

    [...]

Journal ArticleDOI
TL;DR: An adaptive mesh projection method for the time-dependent incompressible Euler equations is presented and second-order convergence in space and time is demonstrated on regular, statically and dynamically refined grids.

1,122 citations

Book
24 Jun 2003
TL;DR: Digital Arithmetic, two of the field's leading experts, deliver a unified treatment of digital arithmetic, tying underlying theory to design practice in a technology-independent manner, to develop sound solutions, avoid known mistakes, and repeat successful design decisions.
Abstract: Digital arithmetic plays an important role in the design of general-purpose digital processors and of embedded systems for signal processing, graphics, and communications. In spite of a mature body of knowledge in digital arithmetic, each new generation of processors or digital systems creates new arithmetic design problems. Designers, researchers, and graduate students will find solid solutions to these problems in this comprehensive, state-of-the-art exposition of digital arithmetic. Ercegovac and Lang, two of the field's leading experts, deliver a unified treatment of digital arithmetic, tying underlying theory to design practice in a technology-independent manner. They consistently use an algorithmic approach in defining arithmetic operations, illustrate concepts with examples of designs at the logic level, and discuss cost/performance characteristics throughout. Students and practicing designers alike will find Digital Arithmetic a definitive reference and a consistent teaching tool for developing a deep understanding of the "arithmetic style" of algorithms and designs. Guides readers to develop sound solutions, avoid known mistakes, and repeat successful design decisions. Presents comprehensive coveragefrom fundamental theories to current research trends. Written in a clear and engaging style by two masters of the field. Concludes each chapter with in-depth discussions of the key literature. Includes a full set of over 250 exercises, an on-line appendix with solutions to one-third of the exercises and 600 lecture slides

742 citations

Journal ArticleDOI
TL;DR: Algorithms for summation and dot product of floating-point numbers are presented which are fast in terms of measured computing time and it is shown that the computed results are as accurate as if computed in twice or K-fold working precision.
Abstract: Algorithms for summation and dot product of floating-point numbers are presented which are fast in terms of measured computing time. We show that the computed results are as accurate as if computed in twice or K-fold working precision, $K\ge 3$. For twice the working precision our algorithms for summation and dot product are some 40% faster than the corresponding XBLAS routines while sharing similar error estimates. Our algorithms are widely applicable because they require only addition, subtraction, and multiplication of floating-point numbers in the same working precision as the given data. Higher precision is unnecessary, algorithms are straight loops without branch, and no access to mantissa or exponent is necessary.

403 citations

References
More filters
Book
01 Jan 1968
TL;DR: The arrangement of this invention provides a strong vibration free hold-down mechanism while avoiding a large pressure drop to the flow of coolant fluid.
Abstract: A fuel pin hold-down and spacing apparatus for use in nuclear reactors is disclosed. Fuel pins forming a hexagonal array are spaced apart from each other and held-down at their lower end, securely attached at two places along their length to one of a plurality of vertically disposed parallel plates arranged in horizontally spaced rows. These plates are in turn spaced apart from each other and held together by a combination of spacing and fastening means. The arrangement of this invention provides a strong vibration free hold-down mechanism while avoiding a large pressure drop to the flow of coolant fluid. This apparatus is particularly useful in connection with liquid cooled reactors such as liquid metal cooled fast breeder reactors.

17,939 citations


Additional excerpts

  • ...A list of reliable identities for floating-point arithmetic is given by Knuth [ 17 ]....

    [...]

Book ChapterDOI
27 May 1996
TL;DR: Triangle as discussed by the authors is a robust implementation of two-dimensional constrained Delaunay triangulation and Ruppert's Delaunayer refinement algorithm for quality mesh generation, and it is shown that the problem of triangulating a planar straight line graph (PSLG) without introducing new small angles is impossible for some PSLGs.
Abstract: Triangle is a robust implementation of two-dimensional constrained Delaunay triangulation and Ruppert's Delaunay refinement algorithm for quality mesh generation. Several implementation issues are discussed, including the choice of triangulation algorithms and data structures, the effect of several variants of the Delaunay refinement algorithm on mesh quality, and the use of adaptive exact arithmetic to ensure robustness with minimal sacrifice of speed. The problem of triangulating a planar straight line graph (PSLG) without introducing new small angles is shown to be impossible for some PSLGs, contradicting the claim that a variant of the Delaunay refinement algorithm solves this problem.

2,268 citations

Journal ArticleDOI

1,517 citations


"Adaptive Precision Floating-Point A..." refers methods in this paper

  • ...Pyramid is a 3D Delaunay tetrahedralizer that uses an incremental algorithm [25]....

    [...]