scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Adaptive protocols for information dissemination in wireless sensor networks

TL;DR: It is found that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches, and that, in terms of dissemination rate and energy usage, the SPlN protocols perform close to the theoretical optimum.
Abstract: In this paper, we present a family of adaptive protocols, called SPIN (Sensor Protocols for Information via Negotiation), that efficiently disseminates information among sensors in an energy-constrained wireless sensor network. Nodes running a SPIN communication protocol name their data using high-level data descriptors, called meta-data. They use meta-data negotiations to eliminate the transmission of redundant data throughout the network. In addition, SPIN nodes can base their communication decisions both upon application-specific knowledge of the data and upon knowledge of the resources that are available to them. This allows the sensors to efficiently distribute data given a limited energy supply. We simulate and analyze the performance of two specific SPIN protocols, comparing them to other possible approaches and a theoretically optimal protocol. We find that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches. We also find that, in terms of dissemination rate and energy usage, the SPlN protocols perform close to the theoretical optimum.

Content maybe subject to copyright    Report

Citations
More filters
01 Jan 2002
TL;DR: This paper model data-centric routing and compare its performance with tra- ditional end-to-end routing schemes for mobile ad-hoc networks, and shows that it offers significant performance gains across a wide range of opera- tional scenarios.
Abstract: Sensor networks differ from traditional net- works in several ways: sensor networks have severe en- ergy constraints, redundant low-rate data, and many-to-one flows. The end-to-end routing schemes that have been pro- posed in the literature for mobile ad-hoc networks are not appropriate under these settings. Data-centric technologies are needed that perform in-network aggregation of data to yield energy-efficient dissemination. In this paper we model data-centric routing and compare its performance with tra- ditional end-to-end routing schemes. We examine the im- pact of source-destination placement and communication network density on the energy costs, delay, and robustness of data aggregation. We show that data-centric routing offers significant performance gains across a wide range of opera- tional scenarios.

570 citations


Cites background from "Adaptive protocols for information ..."

  • ...The meta-naming of data is suggested in [14] as a means to reduce transmission of redundant data for flooding-like schemes for information dissemination....

    [...]

  • ...The applications, networking principles and protocols for these systems are just beginning to be developed [9], [10], [14], [28]....

    [...]

01 Jan 2002
TL;DR: The study reveals that even a simple protocol, flooding, can exhibit surprising complexity at scale, and lays a foundation for a much wider set of algorithmic studies in this space.
Abstract: A new class of networked systems is emerging that involve very large numbers of small, low-power, wireless devices. We present findings from a large scale empirical study involving over 150 such nodes operated at various transmission power settings. The instrumentation in our experiments permits us to separate effects at the various layers of the protocol stack. At the link layer, we present statistics on packet reception, effective communication range and link asymmetry; at the MAC layer, we measure contention, collision and latency; and at the application layer, we analyze the structure of trees constructed using flooding. The study reveals that even a simple protocol, flooding, can exhibit surprising complexity at scale. The data and analysis lay a foundation for a much wider set of algorithmic studies in this space.

564 citations

Proceedings ArticleDOI
07 Aug 2002
TL;DR: This work presents the Fjords architecture for managing multiple queries over many sensors, and shows how it can be used to limit sensor resource demands while maintaining high query throughput.
Abstract: If industry visionaries are correct, our lives will soon be full of sensors, connected together in loose conglomerations via wireless networks, each monitoring and collecting data about the environment at large. These sensors behave very differently from traditional database sources: they have intermittent connectivity, are limited by severe power constraints, and typically sample periodically and push immediately, keeping no record of historical information. These limitations make traditional database systems inappropriate for queries over sensors. We present the Fjords architecture for managing multiple queries over many sensors, and show how it can be used to limit sensor resource demands while maintaining high query throughput. We evaluate our architecture using traces from a network of traffic sensors deployed on Interstate 80 near Berkeley and present performance results that show how query throughput, communication costs and power consumption are necessarily coupled in sensor environments.

561 citations


Cites background from "Adaptive protocols for information ..."

  • ...Research projects on sensor networks have begun to recognize the importance of data processing issues such as aggregating readings from multiple sensors [19, 22]....

    [...]

Journal ArticleDOI
TL;DR: MiLAN, a new middleware that allows applications to specify a policy for managing the network and sensors, but the actual implementation of this policy is effected within MiLAN, is described and its effectiveness is shown through the design of a sensor-based personal health monitor.
Abstract: Current trends in computing include increases in both distribution and wireless connectivity, leading to highly dynamic, complex environments on top of which applications must be built. The task of designing and ensuring the correctness of applications in these environments is similarly becoming more complex. The unified goal of much of the research in distributed wireless systems is to provide higher-level abstractions of complex low-level concepts to application programmers, easing the design and implementation of applications. A new and growing class of applications for wireless sensor networks require similar complexity encapsulation. However, sensor networks have some unique characteristics, including dynamic availability of data sources and application quality of service requirements, that are not common to other types of applications. These unique features, combined with the inherent distribution of sensors, and limited energy and bandwidth resources, dictate the need for network functionality and the individual sensors to be controlled to best serve the application requirements. In this article, we describe different types of sensor network applications and discuss existing techniques for managing these types of networks. We also overview a variety of related middleware and argue that no existing approach provides all the management tools required by sensor network applications. To meet this need, we have developed a new middleware called MiLAN. MiLAN allows applications to specify a policy for managing the network and sensors, but the actual implementation of this policy is effected within MiLAN. We describe MiLAN and show its effectiveness through the design of a sensor-based personal health monitor.

554 citations


Cites background from "Adaptive protocols for information ..."

  • ...For example, both Limbo [17] and FarGo [18] reorder data exchanges or relocate components to respond to changing network conditions such as bandwidth availability or link reliability....

    [...]

Proceedings ArticleDOI
20 Jun 2002
TL;DR: This work shows how the database community's notion of a generic query interface for data aggregation can be applied to ad-hoc networks of sensor devices, and shows how grouped aggregates can be efficiently computed and offer a comparison to related systems and database projects.
Abstract: We show how the database community's notion of a generic query interface for data aggregation can be applied to ad-hoc networks of sensor devices. As has been noted in the sensor network literature, aggregation is important as a data reduction tool; networking approaches, however, have focused on application specific solutions, whereas our in-network aggregation approach is driven by a general purpose, SQL-style interface that can execute queries over any type of sensor data while providing opportunities for significant optimization. We present a variety of techniques to improve the reliability and performance of our solution. We also show how grouped aggregates can be efficiently computed and offer a comparison to related systems and database projects.

554 citations


Cites background or methods from "Adaptive protocols for information ..."

  • ...1Note that this is one of many possible techniques that could be used; the reader is referred to [18, 11, 10, 12, 1] for more information....

    [...]

  • ...Networking protocols for routing data in wireless networks are very popular within the literature [12, 1, 4, 5], however, none of them address higher level issues of data processing, merely techniques for data routing....

    [...]

References
More filters
Proceedings ArticleDOI
01 Oct 1994
TL;DR: The modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile hosts.
Abstract: An ad-hoc network is the cooperative engagement of a collection of Mobile Hosts without the required intervention of any centralized Access Point. In this paper we present an innovative design for the operation of such ad-hoc networks. The basic idea of the design is to operate each Mobile Host as a specialized router, which periodically advertises its view of the interconnection topology with other Mobile Hosts within the network. This amounts to a new sort of routing protocol. We have investigated modifications to the basic Bellman-Ford routing mechanisms, as specified by RIP [5], to make it suitable for a dynamic and self-starting network mechanism as is required by users wishing to utilize ad hoc networks. Our modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile Hosts. Finally, we describe the ways in which the basic network-layer routing can be modified to provide MAC-layer support for ad-hoc networks.

6,877 citations

Proceedings ArticleDOI
25 Oct 1998
TL;DR: The results of a derailed packet-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocols, which cover a range of designchoices: DSDV,TORA, DSR and AODV are presented.
Abstract: An ad hoc networkis a collwtion of wirelessmobilenodes dynamically forminga temporarynetworkwithouttheuseof anyexistingnetworkirrfrastructureor centralizedadministration.Dueto the limitedtransmissionrange of ~vlrelessnenvorkinterfaces,multiplenetwork“hops”maybe neededfor onenodeto exchangedata ivithanotheracrox thenetwork.Inrecentyears, a ttiery of nelvroutingprotocols~geted specificallyat this environment havebeen developed.but little pcrfomrartwinformationon mch protocol and no ralistic performancecomparisonbehvwrrthem ISavailable. ~Is paper presentsthe results of a derailedpacket-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocolsthatcovera range of designchoices: DSDV,TORA, DSR and AODV. \Vehave extended the /~r-2networksimulatorto accuratelymodelthe MACandphysical-layer behaviorof the IEEE 802.1I wirelessLANstandard,includinga realistic wtrelesstransmissionchannelmodel, and present the resultsof simulations of net(vorksof 50 mobilenodes.

5,147 citations


"Adaptive protocols for information ..." refers background in this paper

  • ...Recently, mobile ad hoc routing protocols have become an active area of research [3, 10, 16, 18, 22]....

    [...]

Proceedings ArticleDOI
09 Apr 1997
TL;DR: The proposed protocol is a new distributed routing protocol for mobile, multihop, wireless networks that is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks.
Abstract: We present a new distributed routing protocol for mobile, multihop, wireless networks. The protocol is one of a family of protocols which we term "link reversal" algorithms. The protocol's reaction is structured as a temporally-ordered sequence of diffusing computations; each computation consisting of a sequence of directed link reversals. The protocol is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks. In these networks, the protocol's reaction to link failures typically involves only a localized "single pass" of the distributed algorithm. This capability is unique among protocols which are stable in the face of network partitions, and results in the protocol's high degree of adaptivity. This desirable behavior is achieved through the novel use of a "physical or logical clock" to establish the "temporal order" of topological change events which is used to structure (or order) the algorithm's reaction to topological changes. We refer to the protocol as the temporally-ordered routing algorithm (TORA).

2,211 citations


"Adaptive protocols for information ..." refers background in this paper

  • ...Recently, mobile ad hoc routing protocols have become an active area of research [3, 10, 16, 18, 22]....

    [...]

Proceedings ArticleDOI
01 Dec 1987
TL;DR: This paper descrikrs several randomized algorit, hms for dist,rihut.ing updates and driving t,he replicas toward consist,c>nc,y.
Abstract: Whru a dilt~lhSC is replicated at, many sites2 maintaining mutual consistrnry among t,he sites iu the fac:e of updat,es is a signitirant problem. This paper descrikrs several randomized algorit,hms for dist,rihut.ing updates and driving t,he replicas toward consist,c>nc,y. The algorit Inns are very simple and require few guarant,ees from the underlying conllllunicat.ioll system, yc+ they rnsutc t.hat. the off(~c~t, of (‘very update is evcnt,uwlly rf+irt-ted in a11 rq1ica.s. The cost, and parformancc of t,hr algorithms arc tuned I>? c%oosing appropriat,c dist,rilMions in t,hc randoinizat,ioii step. TIN> idgoritlmls ilr(’ c*los~*ly analogoIls t,o epidemics, and t,he epidcWliolog)litc\ratiirc, ilitlh iii Illld~~rsti4lldill~ tlicir bc*liavior. One of tlW i$,oritlims 11&S brc>n implrmcWrd in the Clraringhousr sprv(brs of thr Xerox C’orporat~c~ Iiitcrnc4, solviiig long-standing prol>lf~lns of high traffic and tlatirl>ilsr inconsistcllcp.

1,958 citations


"Adaptive protocols for information ..." refers background or methods in this paper

  • ...Using gossiping and broadcasting algorithms to disseminate information in distributed systems has been extensively explored in the literature, often as epidemic algorithms [6]....

    [...]

  • ...In [1, 6], gossiping is used to maintain database consistency, while in [18], gossiping is used as a mechanism to achieve fault tolerance....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors specify extensions to two common internetwork routing algorithms (distancevector routing and link-state routing) to support low-delay datagram multicasting beyond a single LAN, and discuss how the use of multicast scope control and hierarchical multicast routing allows the multicast service to scale up to large internetworks.
Abstract: Multicasting, the transmission of a packet to a group of hosts, is an important service for improving the efficiency and robustness of distributed systems and applications. Although multicast capability is available and widely used in local area networks, when those LANs are interconnected by store-and-forward routers, the multicast service is usually not offered across the resulting internetwork. To address this limitation, we specify extensions to two common internetwork routing algorithms—distance-vector routing and link-state routing—to support low-delay datagram multicasting beyond a single LAN. We also describe modifications to the single-spanning-tree routing algorithm commonly used by link-layer bridges, to reduce the costs of multicasting in large extended LANs. Finally, we discuss how the use of multicast scope control and hierarchical multicast routing allows the multicast service to scale up to large internetworks.

1,365 citations