scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Adaptive protocols for information dissemination in wireless sensor networks

TL;DR: It is found that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches, and that, in terms of dissemination rate and energy usage, the SPlN protocols perform close to the theoretical optimum.
Abstract: In this paper, we present a family of adaptive protocols, called SPIN (Sensor Protocols for Information via Negotiation), that efficiently disseminates information among sensors in an energy-constrained wireless sensor network. Nodes running a SPIN communication protocol name their data using high-level data descriptors, called meta-data. They use meta-data negotiations to eliminate the transmission of redundant data throughout the network. In addition, SPIN nodes can base their communication decisions both upon application-specific knowledge of the data and upon knowledge of the resources that are available to them. This allows the sensors to efficiently distribute data given a limited energy supply. We simulate and analyze the performance of two specific SPIN protocols, comparing them to other possible approaches and a theoretically optimal protocol. We find that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches. We also find that, in terms of dissemination rate and energy usage, the SPlN protocols perform close to the theoretical optimum.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: An energy efficient and trust aware framework for secure routing in LEACH (EETA-LEACH), has been proposed that improves LEACH protocol by introducing trust to provide secure routing, while maintaining originality of LEach protocol.
Abstract: Wireless Sensor Network (WSN) is an advanced technology and has been used widely in many applications such as health monitoring, environment monitoring, military purpose etc. Nature of this network is that they are often placed in an open environment and are susceptible to various attacks. Traditional cryptography methods are not supportable in WSNs as they have high energy and resource constraints. Trust management has been proved to be an effective measure to enhance security as well as to handle threats for WSNs. Trust can be defined as level of reliableness in a node. Low Energy Adaptive Clustering (LEACH) is a cluster based routing protocol for WSN which is superior to direct communication protocol and known for its minimum transmission energy. However, LEACH itself has some limitations related to security. In this paper, an energy efficient and trust aware framework for secure routing in LEACH (EETA-LEACH), has been proposed that improves LEACH protocol by introducing trust to provide secure routing, while maintaining originality of LEACH protocol. This approach is a combination of trust-based routing module and trust management module that works together to select trusted Cluster Head (CH). The simulation results demonstrate that proposed scheme is better in terms of network lifetime and Packet Delivery Ratio (PDR). It is verified that malicious nodes will not be selected as CH and trust value of a malicious node decreases with time.

20 citations


Additional excerpts

  • ...SPIN does not assure final delivery of data to BS, data may get lost somewhere in mid way if intermediate nodes are not interested in that data....

    [...]

  • ...Protocols like LEACH which works on concept of clustering where a CH is chosen and that CH will be responsible for delivering the data to sink node, SPIN works on concept that instead of broadcasting the message multicast the message only to those nodes which show their interest in the data and others like gossiping, flooding are also quite popular as they work keeping power constraints as a issue....

    [...]

  • ...SPIN is not scalable Nodes which are deployed near to BS have to transfer maximum number of data packet....

    [...]

  • ...Some of data-centric protocols are: SPIN, ACQUIRE, Rumor Routing, COUGAR, Directed Diffusion, Information-Directed Routing, EAD etc. SPIN [9, 10] is the first data-centric routing protocol and is being discussed below:...

    [...]

  • ...38 Table 6.1 Simulation Parameters………………………………………........................ 42 viii LIST OF ABBREVIATIONS ADC Analog to Digital converter BS Base Station CH Cluster Head DoS Denial of Service EETA-LEACH An Energy Efficient and Trust Aware Framework for Secure Routing in LEACH for WSNs GEAR Geographic and Energy-Aware Routing HEED Hybrid Energy Efficient Distributed Protocol LEACH Low Energy Adaptive Clustering MANETs Mobile Ad hoc Networks PDR PEGASIS Packet Delivery Ratio Power-Efficient Gathering in Sensor Information Systems QoS Quality of service REQ Request SPIN Sensor Protocols for Information via Negotiation TEEN Threshold sensitive Energy Efficient sensor Network protocol WSNs Wireless Sensor Networks 1 CHAPTER 1 INTRODUCTION...

    [...]

Proceedings ArticleDOI
02 Jul 2003
TL;DR: This paper extends the cellular structure described by M. Caccamo et al. (2002) and analyzes the sensor network capacity when messages are scheduled with the implicit-EDF (earliest deadline first) algorithm to provide delay and throughput guarantee to real-time messages in wireless sensor networks.
Abstract: Distributed networks of wireless sensors/actuators will enable the reliable monitoring and intelligent control of the physical environment accomplishing different tasks ranging from space monitoring and surveillance to homeland security without human intervention. Motivated by the observation that many of these applications are safety critical and have hard real-time requirements, this paper focuses on the problem of providing delay and throughput guarantee to real-time messages in wireless sensor networks. It extends the cellular structure described by M. Caccamo et al. (2002) and analyzes the sensor network capacity when messages are scheduled with the implicit-EDF (earliest deadline first) algorithm.

20 citations


Cites background from "Adaptive protocols for information ..."

  • ...[10] proposed a family of negotiation-based protocols (i....

    [...]

01 Jan 2016
TL;DR: The effectiveness of the proposed Proximity Based Energy Efficient Routing (PEER) is demonstrated in as gains attained in terms of improved lifetime, and energy consumption.
Abstract: With efficient routing, Wireless Sensor Networks (WSNs) can provide the continuous transmission with improved lifetime. Different routing protocols account for the different results over the WSNs. WSNs acquire special place in modern day network applications such as body area networks, home animations, cellular enhancement, etc. Especially, focusing on the home automation, a lot of routing algorithms and protocols have been proposed over the years that aim at enhancing the lifetime of such networks. Some of the popular algorithms include Relative Direction Based Sensor Routing (RDSR), Convention Routing (CR), Relative Identification and Direction-Based Sensor Routing (RIDSR), etc. These protocols focus over solving the routing loop problem along with improvement in lifetime of the overall network. However, the gains attained by these networks show a relatively less improvement. Thus, considering the similar problem of routing loop and a lifetime, an energy efficient routing algorithm developed on the backbone of the RIDSR is proposed. The proposed routing algorithm uses the proximity approach to find the appropriate set of nodes for transmission, thus, improving lifetime and resolving routing loop issues. The effectiveness of the proposed Proximity Based Energy Efficient Routing (PEER) is demonstrated in as gains attained in terms of improved lifetime, and energy consumption.

20 citations

Book ChapterDOI
01 Jan 2017
TL;DR: This chapter presents routing protocols for wireless sensor networks and also classifies routing in WSN, giving five main classifications of routing protocols which are data-centric, hierarchical, location-based, network flow and QoS aware and opportunistic routing protocols.
Abstract: In Wireless Sensor Network (WSN), the routing protocols have been given attention because most of the routing protocols are application and architecture dependent. This chapter presents routing protocols for wireless sensor networks and also classifies routing in WSN. Chapter gives five main classifications of routing protocols in WSN which are data-centric, hierarchical, location-based, network flow and QoS aware and opportunistic routing protocols. The focus has been given on advancement of routing in WSN in form of opportunistic routing, in which the sensor nodes utilize broadcasting nature of wireless links and the data packets can be transmitted through different paths. The routing protocols for WSN are described and discussed under the appropriate classification. A table of comparison of routing protocols on the basis of power usage, data aggregation, scalability, query basis, overhead, data delivery model and QoS parameters has been presented.

20 citations

References
More filters
Proceedings ArticleDOI
01 Oct 1994
TL;DR: The modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile hosts.
Abstract: An ad-hoc network is the cooperative engagement of a collection of Mobile Hosts without the required intervention of any centralized Access Point. In this paper we present an innovative design for the operation of such ad-hoc networks. The basic idea of the design is to operate each Mobile Host as a specialized router, which periodically advertises its view of the interconnection topology with other Mobile Hosts within the network. This amounts to a new sort of routing protocol. We have investigated modifications to the basic Bellman-Ford routing mechanisms, as specified by RIP [5], to make it suitable for a dynamic and self-starting network mechanism as is required by users wishing to utilize ad hoc networks. Our modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile Hosts. Finally, we describe the ways in which the basic network-layer routing can be modified to provide MAC-layer support for ad-hoc networks.

6,877 citations

Proceedings ArticleDOI
25 Oct 1998
TL;DR: The results of a derailed packet-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocols, which cover a range of designchoices: DSDV,TORA, DSR and AODV are presented.
Abstract: An ad hoc networkis a collwtion of wirelessmobilenodes dynamically forminga temporarynetworkwithouttheuseof anyexistingnetworkirrfrastructureor centralizedadministration.Dueto the limitedtransmissionrange of ~vlrelessnenvorkinterfaces,multiplenetwork“hops”maybe neededfor onenodeto exchangedata ivithanotheracrox thenetwork.Inrecentyears, a ttiery of nelvroutingprotocols~geted specificallyat this environment havebeen developed.but little pcrfomrartwinformationon mch protocol and no ralistic performancecomparisonbehvwrrthem ISavailable. ~Is paper presentsthe results of a derailedpacket-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocolsthatcovera range of designchoices: DSDV,TORA, DSR and AODV. \Vehave extended the /~r-2networksimulatorto accuratelymodelthe MACandphysical-layer behaviorof the IEEE 802.1I wirelessLANstandard,includinga realistic wtrelesstransmissionchannelmodel, and present the resultsof simulations of net(vorksof 50 mobilenodes.

5,147 citations


"Adaptive protocols for information ..." refers background in this paper

  • ...Recently, mobile ad hoc routing protocols have become an active area of research [3, 10, 16, 18, 22]....

    [...]

Proceedings ArticleDOI
09 Apr 1997
TL;DR: The proposed protocol is a new distributed routing protocol for mobile, multihop, wireless networks that is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks.
Abstract: We present a new distributed routing protocol for mobile, multihop, wireless networks. The protocol is one of a family of protocols which we term "link reversal" algorithms. The protocol's reaction is structured as a temporally-ordered sequence of diffusing computations; each computation consisting of a sequence of directed link reversals. The protocol is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks. In these networks, the protocol's reaction to link failures typically involves only a localized "single pass" of the distributed algorithm. This capability is unique among protocols which are stable in the face of network partitions, and results in the protocol's high degree of adaptivity. This desirable behavior is achieved through the novel use of a "physical or logical clock" to establish the "temporal order" of topological change events which is used to structure (or order) the algorithm's reaction to topological changes. We refer to the protocol as the temporally-ordered routing algorithm (TORA).

2,211 citations


"Adaptive protocols for information ..." refers background in this paper

  • ...Recently, mobile ad hoc routing protocols have become an active area of research [3, 10, 16, 18, 22]....

    [...]

Proceedings ArticleDOI
01 Dec 1987
TL;DR: This paper descrikrs several randomized algorit, hms for dist,rihut.ing updates and driving t,he replicas toward consist,c>nc,y.
Abstract: Whru a dilt~lhSC is replicated at, many sites2 maintaining mutual consistrnry among t,he sites iu the fac:e of updat,es is a signitirant problem. This paper descrikrs several randomized algorit,hms for dist,rihut.ing updates and driving t,he replicas toward consist,c>nc,y. The algorit Inns are very simple and require few guarant,ees from the underlying conllllunicat.ioll system, yc+ they rnsutc t.hat. the off(~c~t, of (‘very update is evcnt,uwlly rf+irt-ted in a11 rq1ica.s. The cost, and parformancc of t,hr algorithms arc tuned I>? c%oosing appropriat,c dist,rilMions in t,hc randoinizat,ioii step. TIN> idgoritlmls ilr(’ c*los~*ly analogoIls t,o epidemics, and t,he epidcWliolog)litc\ratiirc, ilitlh iii Illld~~rsti4lldill~ tlicir bc*liavior. One of tlW i$,oritlims 11&S brc>n implrmcWrd in the Clraringhousr sprv(brs of thr Xerox C’orporat~c~ Iiitcrnc4, solviiig long-standing prol>lf~lns of high traffic and tlatirl>ilsr inconsistcllcp.

1,958 citations


"Adaptive protocols for information ..." refers background or methods in this paper

  • ...Using gossiping and broadcasting algorithms to disseminate information in distributed systems has been extensively explored in the literature, often as epidemic algorithms [6]....

    [...]

  • ...In [1, 6], gossiping is used to maintain database consistency, while in [18], gossiping is used as a mechanism to achieve fault tolerance....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors specify extensions to two common internetwork routing algorithms (distancevector routing and link-state routing) to support low-delay datagram multicasting beyond a single LAN, and discuss how the use of multicast scope control and hierarchical multicast routing allows the multicast service to scale up to large internetworks.
Abstract: Multicasting, the transmission of a packet to a group of hosts, is an important service for improving the efficiency and robustness of distributed systems and applications. Although multicast capability is available and widely used in local area networks, when those LANs are interconnected by store-and-forward routers, the multicast service is usually not offered across the resulting internetwork. To address this limitation, we specify extensions to two common internetwork routing algorithms—distance-vector routing and link-state routing—to support low-delay datagram multicasting beyond a single LAN. We also describe modifications to the single-spanning-tree routing algorithm commonly used by link-layer bridges, to reduce the costs of multicasting in large extended LANs. Finally, we discuss how the use of multicast scope control and hierarchical multicast routing allows the multicast service to scale up to large internetworks.

1,365 citations