scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Adaptive protocols for information dissemination in wireless sensor networks

TL;DR: It is found that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches, and that, in terms of dissemination rate and energy usage, the SPlN protocols perform close to the theoretical optimum.
Abstract: In this paper, we present a family of adaptive protocols, called SPIN (Sensor Protocols for Information via Negotiation), that efficiently disseminates information among sensors in an energy-constrained wireless sensor network. Nodes running a SPIN communication protocol name their data using high-level data descriptors, called meta-data. They use meta-data negotiations to eliminate the transmission of redundant data throughout the network. In addition, SPIN nodes can base their communication decisions both upon application-specific knowledge of the data and upon knowledge of the resources that are available to them. This allows the sensors to efficiently distribute data given a limited energy supply. We simulate and analyze the performance of two specific SPIN protocols, comparing them to other possible approaches and a theoretically optimal protocol. We find that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches. We also find that, in terms of dissemination rate and energy usage, the SPlN protocols perform close to the theoretical optimum.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: It will be shown in this paper that incorporating the random walk routing protocol with the density-aware deployment scheme can effectively prolong the network lifetime.
Abstract: Topology is one of the most important characteristics for any type of networks because it represents the network’s inherent properties and has great impact on the performance of the network. For wireless sensor networks (WSN), a well-deployed regular topology can help save more energy than what a random topology can do. WSNs with regular topologies can prolong network lifetime as studied in many previous work. However, little work has been done in developing effective routing algorithms for WSNs with regular topologies, except routing along a shortest path with the knowledge of global location information of sensor nodes. In this paper, a new routing protocol based on random walk is proposed. It does not require global location information. It also achieves load balancing property inherently for WSNs which is difficult to achieve by other routing protocols. In the scenarios where the message required to be sent to the base station is in comparatively small size with the inquiry message among neighboring nodes, it is proved that the random walk routing protocol can guarantee high probability of successful transmission from the source to the base station with the same amount of energy consumption as the shortest path routing. Since in many applications of WSNs, sensor nodes often send only beep-like small messages to the base station to report their status, our proposed random walk routing is thus a viable scheme and can work very efficiently especially in these application scenarios. The random walk routing provides load balancing in the WSN as mentioned, however, the nodes near to the base station are inevitably under heavier burden than those far away from the base station. Therefore, a density-aware deployment scheme is further proposed to guarantee that the heavy-load nodes do not affect the network lifetime even if their energy is exhausted. The main idea is deploying sensors with different densities according to their distance to the base station. It will be shown in this paper that incorporating the random walk routing protocol with the density-aware deployment scheme can effectively prolong the network lifetime.

17 citations

Journal ArticleDOI
TL;DR: Two types of power and time efficient broadcasting protocols are proposed, namely one-to-all and all- to-all broadcasting protocols, for five different WSN topologies, which are collision free and efficient.
Abstract: The wireless sensor network (WSN) has attracted lots of attention recently. Broadcast is a fundamental operation for all kinds of networks and it has not been addressed seriously in the WSN. Therefore, we propose two types of power and time efficient broadcasting protocols, namely one-to-all and all-to-all broadcasting protocols, for five different WSN topologies. Our one-to-all broadcasting protocols conserve power and time by choosing as few relay nodes as possible to scatter packets to the whole network. Besides, collisions are carefully handled such that our one-to-all broadcasting protocols can achieve 100% reachability. By assigning each node a proper channel, our all-to-all broadcasting protocols are collision free and efficient. Numerical evaluation results compare the performance of the five topologies and show that our broadcasting protocols are power and time efficient. Copyright © 2005 John Wiley & Sons, Ltd.

17 citations

Journal ArticleDOI
TL;DR: This work analyzes the process of random walking in graphs, and observes that the weight of an edge gotten by processing the vertices visited by the walker could be an indicator to measure the closeness of vertex connection.

17 citations

Journal Article
TL;DR: Two new metric like thresholds, energy cost to find energy critical sensor node and energy efficient path respectively give rise to the design of Distributed Energy Aware Routing Protocol (DEARP) for Wireless Sensor Networks.
Abstract: Wireless Sensor Networks consist of a large population of sensor nodes capable of computation, communication and sensing. Limited energy resource is the inherent limitation of Wireless Sensor Network, Most routing algorithms for Sensor Network focus on energy efficient paths, Due to this, power in the sensor, along the energy efficient paths gets depleted very quickly, and therefore Sensor Networks becomes incapable of monitoring events from certain parts of the targeted area. Ideally, routing algorithm should consider not only energy efficient (shortest) path but also available energy at every Sensor node along the path, thereby delaying the non- functioning of sensors due to early power depletion. In this paper, we are introducing two new metric like thresholds, energy cost to find energy critical sensor node and energy efficient path respectively. These two metric gives rise to the design of Distributed Energy Aware Routing Protocol (DEARP) for Wireless Sensor Networks. DEARP is designed to generate routing paths in a decentralized manner, while considering the energy efficiency, and available energy in each sensor node to avoid early power depletion. Experimental result shows the effectiveness of proposed algorithm in terms of network lifetime, energy consumption and Quality of Service (QoS) parameters. Comparative analysis of DEARP with the widely used AODV shows that energy cost along with available energy in each node should be considered to extend lifetime of Sensor Network.

17 citations

F Tang, M Guo, M Li, Cho-Li Wang, Mianxiong Dong 
01 Jan 2007
TL;DR: This paper proposes a scalable architecture of WMSNs, discusses and analyze key research issues under the proposed architecture, and designs two routing protocols aiming at minimizing the number of hops between a source node and a destination node and maximizing the lifetime of sensor networks.
Abstract: Wireless mesh sensor network (WMSN) is a new architecture that merges advantages of wireless mesh networks and wireless sensor networks, especially on scalability, robustness and balanced energy dissipation. Secure routing in WMSNs faces with more challenges than that in traditional sensor networks by reason of multiple sink nodes and the mobility of nodes. In this paper, we propose a scalable architecture of WMSNs, discuss and analyze key research issues under the proposed architecture, and then design two routing protocols aiming at minimizing the number of hops between a source node and a destination node and maximizing the lifetime of sensor networks. Considering new challenges to security in WMSNs, this paper also presents a secure routing protocol SecMLR, which can resist most of attacks against routing in WMSNs and work in energy-efficient way.

17 citations


Cites background from "Adaptive protocols for information ..."

  • ...Relative coordinates of neighboring nodes can be obtained by exchanging such information between neighbors....

    [...]

References
More filters
Proceedings ArticleDOI
01 Oct 1994
TL;DR: The modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile hosts.
Abstract: An ad-hoc network is the cooperative engagement of a collection of Mobile Hosts without the required intervention of any centralized Access Point. In this paper we present an innovative design for the operation of such ad-hoc networks. The basic idea of the design is to operate each Mobile Host as a specialized router, which periodically advertises its view of the interconnection topology with other Mobile Hosts within the network. This amounts to a new sort of routing protocol. We have investigated modifications to the basic Bellman-Ford routing mechanisms, as specified by RIP [5], to make it suitable for a dynamic and self-starting network mechanism as is required by users wishing to utilize ad hoc networks. Our modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile Hosts. Finally, we describe the ways in which the basic network-layer routing can be modified to provide MAC-layer support for ad-hoc networks.

6,877 citations

Proceedings ArticleDOI
25 Oct 1998
TL;DR: The results of a derailed packet-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocols, which cover a range of designchoices: DSDV,TORA, DSR and AODV are presented.
Abstract: An ad hoc networkis a collwtion of wirelessmobilenodes dynamically forminga temporarynetworkwithouttheuseof anyexistingnetworkirrfrastructureor centralizedadministration.Dueto the limitedtransmissionrange of ~vlrelessnenvorkinterfaces,multiplenetwork“hops”maybe neededfor onenodeto exchangedata ivithanotheracrox thenetwork.Inrecentyears, a ttiery of nelvroutingprotocols~geted specificallyat this environment havebeen developed.but little pcrfomrartwinformationon mch protocol and no ralistic performancecomparisonbehvwrrthem ISavailable. ~Is paper presentsthe results of a derailedpacket-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocolsthatcovera range of designchoices: DSDV,TORA, DSR and AODV. \Vehave extended the /~r-2networksimulatorto accuratelymodelthe MACandphysical-layer behaviorof the IEEE 802.1I wirelessLANstandard,includinga realistic wtrelesstransmissionchannelmodel, and present the resultsof simulations of net(vorksof 50 mobilenodes.

5,147 citations


"Adaptive protocols for information ..." refers background in this paper

  • ...Recently, mobile ad hoc routing protocols have become an active area of research [3, 10, 16, 18, 22]....

    [...]

Proceedings ArticleDOI
09 Apr 1997
TL;DR: The proposed protocol is a new distributed routing protocol for mobile, multihop, wireless networks that is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks.
Abstract: We present a new distributed routing protocol for mobile, multihop, wireless networks. The protocol is one of a family of protocols which we term "link reversal" algorithms. The protocol's reaction is structured as a temporally-ordered sequence of diffusing computations; each computation consisting of a sequence of directed link reversals. The protocol is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks. In these networks, the protocol's reaction to link failures typically involves only a localized "single pass" of the distributed algorithm. This capability is unique among protocols which are stable in the face of network partitions, and results in the protocol's high degree of adaptivity. This desirable behavior is achieved through the novel use of a "physical or logical clock" to establish the "temporal order" of topological change events which is used to structure (or order) the algorithm's reaction to topological changes. We refer to the protocol as the temporally-ordered routing algorithm (TORA).

2,211 citations


"Adaptive protocols for information ..." refers background in this paper

  • ...Recently, mobile ad hoc routing protocols have become an active area of research [3, 10, 16, 18, 22]....

    [...]

Proceedings ArticleDOI
01 Dec 1987
TL;DR: This paper descrikrs several randomized algorit, hms for dist,rihut.ing updates and driving t,he replicas toward consist,c>nc,y.
Abstract: Whru a dilt~lhSC is replicated at, many sites2 maintaining mutual consistrnry among t,he sites iu the fac:e of updat,es is a signitirant problem. This paper descrikrs several randomized algorit,hms for dist,rihut.ing updates and driving t,he replicas toward consist,c>nc,y. The algorit Inns are very simple and require few guarant,ees from the underlying conllllunicat.ioll system, yc+ they rnsutc t.hat. the off(~c~t, of (‘very update is evcnt,uwlly rf+irt-ted in a11 rq1ica.s. The cost, and parformancc of t,hr algorithms arc tuned I>? c%oosing appropriat,c dist,rilMions in t,hc randoinizat,ioii step. TIN> idgoritlmls ilr(’ c*los~*ly analogoIls t,o epidemics, and t,he epidcWliolog)litc\ratiirc, ilitlh iii Illld~~rsti4lldill~ tlicir bc*liavior. One of tlW i$,oritlims 11&S brc>n implrmcWrd in the Clraringhousr sprv(brs of thr Xerox C’orporat~c~ Iiitcrnc4, solviiig long-standing prol>lf~lns of high traffic and tlatirl>ilsr inconsistcllcp.

1,958 citations


"Adaptive protocols for information ..." refers background or methods in this paper

  • ...Using gossiping and broadcasting algorithms to disseminate information in distributed systems has been extensively explored in the literature, often as epidemic algorithms [6]....

    [...]

  • ...In [1, 6], gossiping is used to maintain database consistency, while in [18], gossiping is used as a mechanism to achieve fault tolerance....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors specify extensions to two common internetwork routing algorithms (distancevector routing and link-state routing) to support low-delay datagram multicasting beyond a single LAN, and discuss how the use of multicast scope control and hierarchical multicast routing allows the multicast service to scale up to large internetworks.
Abstract: Multicasting, the transmission of a packet to a group of hosts, is an important service for improving the efficiency and robustness of distributed systems and applications. Although multicast capability is available and widely used in local area networks, when those LANs are interconnected by store-and-forward routers, the multicast service is usually not offered across the resulting internetwork. To address this limitation, we specify extensions to two common internetwork routing algorithms—distance-vector routing and link-state routing—to support low-delay datagram multicasting beyond a single LAN. We also describe modifications to the single-spanning-tree routing algorithm commonly used by link-layer bridges, to reduce the costs of multicasting in large extended LANs. Finally, we discuss how the use of multicast scope control and hierarchical multicast routing allows the multicast service to scale up to large internetworks.

1,365 citations