scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Adaptive protocols for information dissemination in wireless sensor networks

TL;DR: It is found that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches, and that, in terms of dissemination rate and energy usage, the SPlN protocols perform close to the theoretical optimum.
Abstract: In this paper, we present a family of adaptive protocols, called SPIN (Sensor Protocols for Information via Negotiation), that efficiently disseminates information among sensors in an energy-constrained wireless sensor network. Nodes running a SPIN communication protocol name their data using high-level data descriptors, called meta-data. They use meta-data negotiations to eliminate the transmission of redundant data throughout the network. In addition, SPIN nodes can base their communication decisions both upon application-specific knowledge of the data and upon knowledge of the resources that are available to them. This allows the sensors to efficiently distribute data given a limited energy supply. We simulate and analyze the performance of two specific SPIN protocols, comparing them to other possible approaches and a theoretically optimal protocol. We find that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches. We also find that, in terms of dissemination rate and energy usage, the SPlN protocols perform close to the theoretical optimum.

Content maybe subject to copyright    Report

Citations
More filters
Book
17 Dec 2003
TL;DR: This paper presents a meta-modelling architecture for distributed wireless sensor networks that automates the very labor-intensive and therefore time-heavy and expensive process of laying out and configuring these networks.
Abstract: Preface About the Author 1. Networked Embedded Systems 2. Smart Sensor Networks 3. Power-Aware Wireless Sensor Networks 4. Routing in Wireless Sensor Networks 5. Distributed Sensor Networks 6. Clustering Techniques in Wireless Sensor Networks 7. Security Protocols for Wireless Sensor Networks 8. Operating Systems for Embedded Applications 9. Network Support for Embedded Applications 10. Applications of Wireless Sensor Networks References Index

286 citations

Journal ArticleDOI
01 Oct 2001
TL;DR: Experimental results show that the proposed solutions cut down the energy consumption by more than 5 times, considerably increasing sensor lifetimes, and thereby, the lifetime of the networks formed from these sensors.
Abstract: In this paper we discuss the problem of monitoring data sensed in large sensor networks. A sensor typically runs on a battery having a limited lifetime. In order to increase the lifetime of a sensor it is important that the mechanisms used in monitoring them be energy-efficient. In this paper, we propose a new paradigm called Prediction-based monitoring for energy-efficient monitoring. We show that the paradigm can be visualized as a watching of a "sensor movie" and that concepts from MPEG may be applied to it. We have implemented the proposed algorithms in a test bed of Rene Motes [2]. Experimental results show that the proposed solutions cut down the energy consumption by more than 5 times, considerably increasing sensor lifetimes, and thereby, the lifetime of the networks formed from these sensors.

286 citations

Proceedings ArticleDOI
04 Nov 2003
TL;DR: A bidding protocol to assist the movement of mobile sensors in which mobile sensors can move from dense areas to sparse areas to improve the overall coverage.
Abstract: In some harsh environments, manually deploying sensors is impossible. Alternative methods may lead to imprecise placement resulting in coverage holes. To provide the required high coverage in these situations, we propose to deploy sensor networks composed of a mixture of mobile and static sensors in which mobile sensors can move from dense areas to sparse areas to improve the overall coverage. This paper presents a bidding protocol to assist the movement of mobile sensors. In the protocol, static sensors detect coverage holes locally by using Voronoi diagrams, and bid for mobile sensors based on the size of the detected hole. Mobile sensors choose coverage holes to heal based on the bid. Simulation results show that our algorithm provides suitable tradeoff between coverage and sensor cost.

285 citations


Cites background from "Adaptive protocols for information ..."

  • ...Sensor networks are revolutionizing the traditional methods of data collection, bridging the gap between the physical world and the virtual information world [8, 11, 14, 16]....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive survey and comparison of routing protocols in WSNs from classical routing protocols to swarm intelligence based protocols and a comparison of a representative number of classical and swarm based protocols are presented.

274 citations


Cites background from "Adaptive protocols for information ..."

  • ...In SPIN, data are named using meta-data....

    [...]

  • ...Flooding and gossiping (F&G) These are protocols which do not utilize routing algorithm and topology maintenance for data transmission in sensor networks (Heinzelman et al., 1999; Kulik et al., 2002; Hedetniemi et al., 1988)....

    [...]

  • ...The advertisement method of SPIN does not guarantee the delivery of data as nodes that are interested in the data may be far away from the source node, and nodes in between the source and the sink may not be interested....

    [...]

  • ...SPIN applications are resource-aware and resource-adaptive....

    [...]

  • ...Sensor protocol for information via negotiation (SPIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1515 5.1.4....

    [...]

Proceedings ArticleDOI
08 Oct 2001
TL;DR: This work proposes a general framework of agent movement and communication in which mobile computers physically carry packets across network partitions, and proposes algorithms that exploit the relative position of stationary devices and non-randonmess in the movement of mobile agents in the network.
Abstract: The decreasing size and cost of wearable computers and mobile sensors is presenting new challenges and opportunities for deploying networks. Existing network routing protocols provide reliable communication between nodes and allow for mobility and even ad-hoc deployment. They rely, however on the assumption of a dense scattering of nodes and end-to-end connectivity in the network. In this paper we address routing support for ad-hoc, wireless networks under conditions of sporadic connectivity and ever-present network partitions. This work proposes a general framework of agent movement and communication in which mobile computers physically carry packets across network partitions. We then propose algorithms that exploit the relative position of stationary devices and non-randonmess in the movement of mobile agents in the network. The learned structure of the network is used to inform an adaptive routing strategy With a simulation, we evaluate these algorithms and their ability to route packets efficiently through a highly-partitioned network.

270 citations

References
More filters
Proceedings ArticleDOI
01 Oct 1994
TL;DR: The modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile hosts.
Abstract: An ad-hoc network is the cooperative engagement of a collection of Mobile Hosts without the required intervention of any centralized Access Point. In this paper we present an innovative design for the operation of such ad-hoc networks. The basic idea of the design is to operate each Mobile Host as a specialized router, which periodically advertises its view of the interconnection topology with other Mobile Hosts within the network. This amounts to a new sort of routing protocol. We have investigated modifications to the basic Bellman-Ford routing mechanisms, as specified by RIP [5], to make it suitable for a dynamic and self-starting network mechanism as is required by users wishing to utilize ad hoc networks. Our modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile Hosts. Finally, we describe the ways in which the basic network-layer routing can be modified to provide MAC-layer support for ad-hoc networks.

6,877 citations

Proceedings ArticleDOI
25 Oct 1998
TL;DR: The results of a derailed packet-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocols, which cover a range of designchoices: DSDV,TORA, DSR and AODV are presented.
Abstract: An ad hoc networkis a collwtion of wirelessmobilenodes dynamically forminga temporarynetworkwithouttheuseof anyexistingnetworkirrfrastructureor centralizedadministration.Dueto the limitedtransmissionrange of ~vlrelessnenvorkinterfaces,multiplenetwork“hops”maybe neededfor onenodeto exchangedata ivithanotheracrox thenetwork.Inrecentyears, a ttiery of nelvroutingprotocols~geted specificallyat this environment havebeen developed.but little pcrfomrartwinformationon mch protocol and no ralistic performancecomparisonbehvwrrthem ISavailable. ~Is paper presentsthe results of a derailedpacket-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocolsthatcovera range of designchoices: DSDV,TORA, DSR and AODV. \Vehave extended the /~r-2networksimulatorto accuratelymodelthe MACandphysical-layer behaviorof the IEEE 802.1I wirelessLANstandard,includinga realistic wtrelesstransmissionchannelmodel, and present the resultsof simulations of net(vorksof 50 mobilenodes.

5,147 citations


"Adaptive protocols for information ..." refers background in this paper

  • ...Recently, mobile ad hoc routing protocols have become an active area of research [3, 10, 16, 18, 22]....

    [...]

Proceedings ArticleDOI
09 Apr 1997
TL;DR: The proposed protocol is a new distributed routing protocol for mobile, multihop, wireless networks that is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks.
Abstract: We present a new distributed routing protocol for mobile, multihop, wireless networks. The protocol is one of a family of protocols which we term "link reversal" algorithms. The protocol's reaction is structured as a temporally-ordered sequence of diffusing computations; each computation consisting of a sequence of directed link reversals. The protocol is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks. In these networks, the protocol's reaction to link failures typically involves only a localized "single pass" of the distributed algorithm. This capability is unique among protocols which are stable in the face of network partitions, and results in the protocol's high degree of adaptivity. This desirable behavior is achieved through the novel use of a "physical or logical clock" to establish the "temporal order" of topological change events which is used to structure (or order) the algorithm's reaction to topological changes. We refer to the protocol as the temporally-ordered routing algorithm (TORA).

2,211 citations


"Adaptive protocols for information ..." refers background in this paper

  • ...Recently, mobile ad hoc routing protocols have become an active area of research [3, 10, 16, 18, 22]....

    [...]

Proceedings ArticleDOI
01 Dec 1987
TL;DR: This paper descrikrs several randomized algorit, hms for dist,rihut.ing updates and driving t,he replicas toward consist,c>nc,y.
Abstract: Whru a dilt~lhSC is replicated at, many sites2 maintaining mutual consistrnry among t,he sites iu the fac:e of updat,es is a signitirant problem. This paper descrikrs several randomized algorit,hms for dist,rihut.ing updates and driving t,he replicas toward consist,c>nc,y. The algorit Inns are very simple and require few guarant,ees from the underlying conllllunicat.ioll system, yc+ they rnsutc t.hat. the off(~c~t, of (‘very update is evcnt,uwlly rf+irt-ted in a11 rq1ica.s. The cost, and parformancc of t,hr algorithms arc tuned I>? c%oosing appropriat,c dist,rilMions in t,hc randoinizat,ioii step. TIN> idgoritlmls ilr(’ c*los~*ly analogoIls t,o epidemics, and t,he epidcWliolog)litc\ratiirc, ilitlh iii Illld~~rsti4lldill~ tlicir bc*liavior. One of tlW i$,oritlims 11&S brc>n implrmcWrd in the Clraringhousr sprv(brs of thr Xerox C’orporat~c~ Iiitcrnc4, solviiig long-standing prol>lf~lns of high traffic and tlatirl>ilsr inconsistcllcp.

1,958 citations


"Adaptive protocols for information ..." refers background or methods in this paper

  • ...Using gossiping and broadcasting algorithms to disseminate information in distributed systems has been extensively explored in the literature, often as epidemic algorithms [6]....

    [...]

  • ...In [1, 6], gossiping is used to maintain database consistency, while in [18], gossiping is used as a mechanism to achieve fault tolerance....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors specify extensions to two common internetwork routing algorithms (distancevector routing and link-state routing) to support low-delay datagram multicasting beyond a single LAN, and discuss how the use of multicast scope control and hierarchical multicast routing allows the multicast service to scale up to large internetworks.
Abstract: Multicasting, the transmission of a packet to a group of hosts, is an important service for improving the efficiency and robustness of distributed systems and applications. Although multicast capability is available and widely used in local area networks, when those LANs are interconnected by store-and-forward routers, the multicast service is usually not offered across the resulting internetwork. To address this limitation, we specify extensions to two common internetwork routing algorithms—distance-vector routing and link-state routing—to support low-delay datagram multicasting beyond a single LAN. We also describe modifications to the single-spanning-tree routing algorithm commonly used by link-layer bridges, to reduce the costs of multicasting in large extended LANs. Finally, we discuss how the use of multicast scope control and hierarchical multicast routing allows the multicast service to scale up to large internetworks.

1,365 citations