scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Adaptive protocols for information dissemination in wireless sensor networks

TL;DR: It is found that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches, and that, in terms of dissemination rate and energy usage, the SPlN protocols perform close to the theoretical optimum.
Abstract: In this paper, we present a family of adaptive protocols, called SPIN (Sensor Protocols for Information via Negotiation), that efficiently disseminates information among sensors in an energy-constrained wireless sensor network. Nodes running a SPIN communication protocol name their data using high-level data descriptors, called meta-data. They use meta-data negotiations to eliminate the transmission of redundant data throughout the network. In addition, SPIN nodes can base their communication decisions both upon application-specific knowledge of the data and upon knowledge of the resources that are available to them. This allows the sensors to efficiently distribute data given a limited energy supply. We simulate and analyze the performance of two specific SPIN protocols, comparing them to other possible approaches and a theoretically optimal protocol. We find that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches. We also find that, in terms of dissemination rate and energy usage, the SPlN protocols perform close to the theoretical optimum.

Content maybe subject to copyright    Report

Citations
More filters
19 Dec 2007
TL;DR: This thesis addresses the dynamics of sink nodes, sensor nodes and event in the routing of wireless sensor networks, while maintaining high reliability and low energy consumption and investigates new algorithms for routing in dynamic wireless environment.
Abstract: The vision of ubiquitous computing requires the development of devices and technologies, which can be pervasive without being intrusive. The basic components of such a smart environment will be small nodes with sensing and wireless communications capabilities, able to organize flexibly into a network for data collection and delivery. The constant improvements in digital circuit technology, has made the deployment of such small, inexpensive, low-power, distributed devices, which are capable of information gathering, processing, and communication in miniature packaging, a reality. Realizing such a network presents very significant challenges, especially at the protocol and software level. Major steps forward are required in the field of communications protocol, data processing, and application support. Although sensor nodes will be equipped with a power supply (battery) and embedded processor that makes them autonomous and self-aware, their functionality and capabilities will be very limited. The resource limitations of Wireless Sensor Networks (WSN), especially in terms of energy, require novel and collaborative approach for the wireless communication. Therefore, collaboration between nodes is essential to deliver smart services in a ubiquitous setting. Current research in this area generally assumes a rather static network, leading to a strong performance degradation in a dynamic environment. In this thesis we investigate new algorithms for routing in dynamic wireless environment and evaluate their feasibility through experimentation. These algorithms will be key for building self-organizing and collaborative sensor networks that show emergent behavior and can operate in a challenging environment where nodes move, fail and energy is a scarce resource. We develop the technology needed for building self-organizing and collabora- tive sensor networks using reconfigurable smart sensor nodes, which are self-aware,self-reconfigurable and autonomous. This technology will enable the creation of a new generation of sensors, which can effectively network together so as to provide a flexible platform for the support of a large variety of mobile sensor network applications. In this thesis, we address the dynamics of sink nodes, sensor nodes and event in the routing of wireless sensor networks, while maintaining high reliability and low energy consumption. The hypothesis is that this requires different routing protocols and approaches. The varying application scenarios of wireless sensor networks require different routing protocols and approaches as well. This thesis has three major contributions to the routing in dynamic wireless sensor networks. Firstly, a combination between a new multipath on-Demand Rout- ing protocol and a data-splitting scheme which results in an e±cient solution for high reliability and low traffic. Secondly, a cross-layered approach with a self-organizing medium access control protocol and a tightly integrated source routing protocol is designed for high mobility sensor networks. Finally, a data-centric approach based on cost estimation is designed to disseminate aggregated data from data source to destination with high efficiency.

11 citations

01 Mar 2004
TL;DR: The DSN team investigated hardware and software technologies for unattended ground sensor applications that include node localization techniques, low-power data link protocols, power aware routing protocols, and spatial addressing and routing.
Abstract: : The DSN team investigated hardware and software technologies for unattended ground sensor applications. Task I: Distribution and Aggregation includes node localization techniques, low-power data link protocols, power aware routing protocols, and spatial addressing and routing. Task 2: Declarative Languages and Execution Environment includes topographical soldier interface and a sensor network simulation environment for algorithm development, deployment planning, and operational support. Finally, Task 3: Platforms include investigative hardware development to support laboratory communications, processing, or localization experiments as well as open-source COTS PDA integration and system software in support of the soldier interface.

11 citations

Journal ArticleDOI
01 May 2007
TL;DR: This paper provides a generic model and proposes several algorithms to determine the optimal parameters, either pre-calculated or performed online, and shows that these algorithms perform consistently close to optimal and better than other heuristic schemes.
Abstract: In this paper, we address a fundamental problem concerning the optimal searching strategy in terms of searching cost for the target discovery problem in wireless networks. In order to find the nearest k targets from a total of m members using the minimum cost, should we search the network only once, or should we apply a so-called ''expansion ring scheme?'' Specifically, how many searching attempts should we use, and how large should each searching area be? To answer these questions, we provide a generic model and formulate the expected cost as a function of the parameters of the number of searching attempts n and the searching area for each attempt, A"i. Using this model, we propose several algorithms to determine the optimal parameters, either pre-calculated or performed online. We experiment with these algorithms on general wireless network scenarios and show that our algorithms perform consistently close to optimal and better than other heuristic schemes. The desired performance is achieved by adapting the searching radius to estimates of network parameters such as the total number of nodes and the total number of targets.

11 citations


Cites methods from "Adaptive protocols for information ..."

  • ...The model we are going to use in this section is based on the assumption that the source node is at the center of the searching area and the searching areas are concentric circles within the unit area as shown in Fig....

    [...]

01 Jan 2014
TL;DR: The IoT-IPv6 integration handbook for SMEs Contract Due Date 30/03/2014 Submission Date 19/05/2014 Version v1.0 Responsible Partner UL Author List Maria Rita Palattella, Latif Ladid, Sebastien Ziegler Wolfgang Kastner, Markus Jung, Mario Kofler, Dejan D. Drajic, Srdjan Krco, Giang Nam, Rafael Marin Perez Dissemination level PU
Abstract: Deliverable D8.5 IoT-IPv6 integration handbook for SMEs Contract Due Date 30/03/2014 Submission Date 19/05/2014 Version v1.0 Responsible Partner UL Author List Maria Rita Palattella, Latif Ladid, Sebastien Ziegler Wolfgang Kastner, Markus Jung, Mario Kofler, Dejan D. Drajic, Srdjan Krco, Giang Nam, Rafael Marin Perez Dissemination level PU

11 citations


Cites background or methods from "Adaptive protocols for information ..."

  • ...Owning to LML broadcasting trees, SOP decreases the energy consumption for broadcasting which is less than the energy required by the SPIN protocol [96]....

    [...]

  • ...[96] proposed SPIN which is a family of adaptive protocols for data-centric routing....

    [...]

  • ...Two earlier data-centric proposals SPIN [96] and directed diffusion [97], considered data negotiation among nodes to avoid redundancy and save energy....

    [...]

References
More filters
Proceedings ArticleDOI
01 Oct 1994
TL;DR: The modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile hosts.
Abstract: An ad-hoc network is the cooperative engagement of a collection of Mobile Hosts without the required intervention of any centralized Access Point. In this paper we present an innovative design for the operation of such ad-hoc networks. The basic idea of the design is to operate each Mobile Host as a specialized router, which periodically advertises its view of the interconnection topology with other Mobile Hosts within the network. This amounts to a new sort of routing protocol. We have investigated modifications to the basic Bellman-Ford routing mechanisms, as specified by RIP [5], to make it suitable for a dynamic and self-starting network mechanism as is required by users wishing to utilize ad hoc networks. Our modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile Hosts. Finally, we describe the ways in which the basic network-layer routing can be modified to provide MAC-layer support for ad-hoc networks.

6,877 citations

Proceedings ArticleDOI
25 Oct 1998
TL;DR: The results of a derailed packet-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocols, which cover a range of designchoices: DSDV,TORA, DSR and AODV are presented.
Abstract: An ad hoc networkis a collwtion of wirelessmobilenodes dynamically forminga temporarynetworkwithouttheuseof anyexistingnetworkirrfrastructureor centralizedadministration.Dueto the limitedtransmissionrange of ~vlrelessnenvorkinterfaces,multiplenetwork“hops”maybe neededfor onenodeto exchangedata ivithanotheracrox thenetwork.Inrecentyears, a ttiery of nelvroutingprotocols~geted specificallyat this environment havebeen developed.but little pcrfomrartwinformationon mch protocol and no ralistic performancecomparisonbehvwrrthem ISavailable. ~Is paper presentsthe results of a derailedpacket-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocolsthatcovera range of designchoices: DSDV,TORA, DSR and AODV. \Vehave extended the /~r-2networksimulatorto accuratelymodelthe MACandphysical-layer behaviorof the IEEE 802.1I wirelessLANstandard,includinga realistic wtrelesstransmissionchannelmodel, and present the resultsof simulations of net(vorksof 50 mobilenodes.

5,147 citations


"Adaptive protocols for information ..." refers background in this paper

  • ...Recently, mobile ad hoc routing protocols have become an active area of research [3, 10, 16, 18, 22]....

    [...]

Proceedings ArticleDOI
09 Apr 1997
TL;DR: The proposed protocol is a new distributed routing protocol for mobile, multihop, wireless networks that is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks.
Abstract: We present a new distributed routing protocol for mobile, multihop, wireless networks. The protocol is one of a family of protocols which we term "link reversal" algorithms. The protocol's reaction is structured as a temporally-ordered sequence of diffusing computations; each computation consisting of a sequence of directed link reversals. The protocol is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks. In these networks, the protocol's reaction to link failures typically involves only a localized "single pass" of the distributed algorithm. This capability is unique among protocols which are stable in the face of network partitions, and results in the protocol's high degree of adaptivity. This desirable behavior is achieved through the novel use of a "physical or logical clock" to establish the "temporal order" of topological change events which is used to structure (or order) the algorithm's reaction to topological changes. We refer to the protocol as the temporally-ordered routing algorithm (TORA).

2,211 citations


"Adaptive protocols for information ..." refers background in this paper

  • ...Recently, mobile ad hoc routing protocols have become an active area of research [3, 10, 16, 18, 22]....

    [...]

Proceedings ArticleDOI
01 Dec 1987
TL;DR: This paper descrikrs several randomized algorit, hms for dist,rihut.ing updates and driving t,he replicas toward consist,c>nc,y.
Abstract: Whru a dilt~lhSC is replicated at, many sites2 maintaining mutual consistrnry among t,he sites iu the fac:e of updat,es is a signitirant problem. This paper descrikrs several randomized algorit,hms for dist,rihut.ing updates and driving t,he replicas toward consist,c>nc,y. The algorit Inns are very simple and require few guarant,ees from the underlying conllllunicat.ioll system, yc+ they rnsutc t.hat. the off(~c~t, of (‘very update is evcnt,uwlly rf+irt-ted in a11 rq1ica.s. The cost, and parformancc of t,hr algorithms arc tuned I>? c%oosing appropriat,c dist,rilMions in t,hc randoinizat,ioii step. TIN> idgoritlmls ilr(’ c*los~*ly analogoIls t,o epidemics, and t,he epidcWliolog)litc\ratiirc, ilitlh iii Illld~~rsti4lldill~ tlicir bc*liavior. One of tlW i$,oritlims 11&S brc>n implrmcWrd in the Clraringhousr sprv(brs of thr Xerox C’orporat~c~ Iiitcrnc4, solviiig long-standing prol>lf~lns of high traffic and tlatirl>ilsr inconsistcllcp.

1,958 citations


"Adaptive protocols for information ..." refers background or methods in this paper

  • ...Using gossiping and broadcasting algorithms to disseminate information in distributed systems has been extensively explored in the literature, often as epidemic algorithms [6]....

    [...]

  • ...In [1, 6], gossiping is used to maintain database consistency, while in [18], gossiping is used as a mechanism to achieve fault tolerance....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors specify extensions to two common internetwork routing algorithms (distancevector routing and link-state routing) to support low-delay datagram multicasting beyond a single LAN, and discuss how the use of multicast scope control and hierarchical multicast routing allows the multicast service to scale up to large internetworks.
Abstract: Multicasting, the transmission of a packet to a group of hosts, is an important service for improving the efficiency and robustness of distributed systems and applications. Although multicast capability is available and widely used in local area networks, when those LANs are interconnected by store-and-forward routers, the multicast service is usually not offered across the resulting internetwork. To address this limitation, we specify extensions to two common internetwork routing algorithms—distance-vector routing and link-state routing—to support low-delay datagram multicasting beyond a single LAN. We also describe modifications to the single-spanning-tree routing algorithm commonly used by link-layer bridges, to reduce the costs of multicasting in large extended LANs. Finally, we discuss how the use of multicast scope control and hierarchical multicast routing allows the multicast service to scale up to large internetworks.

1,365 citations