scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Adaptive protocols for information dissemination in wireless sensor networks

TL;DR: It is found that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches, and that, in terms of dissemination rate and energy usage, the SPlN protocols perform close to the theoretical optimum.
Abstract: In this paper, we present a family of adaptive protocols, called SPIN (Sensor Protocols for Information via Negotiation), that efficiently disseminates information among sensors in an energy-constrained wireless sensor network. Nodes running a SPIN communication protocol name their data using high-level data descriptors, called meta-data. They use meta-data negotiations to eliminate the transmission of redundant data throughout the network. In addition, SPIN nodes can base their communication decisions both upon application-specific knowledge of the data and upon knowledge of the resources that are available to them. This allows the sensors to efficiently distribute data given a limited energy supply. We simulate and analyze the performance of two specific SPIN protocols, comparing them to other possible approaches and a theoretically optimal protocol. We find that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches. We also find that, in terms of dissemination rate and energy usage, the SPlN protocols perform close to the theoretical optimum.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This work proposes a new solution with adaptive location updates for mobile sinks that consumes less energy in each sensor node and also decreases collisions in wireless transmissions, which can be used in large-scale WSNs.
Abstract: Mobile sinks can be used to balance energy consumption for sensor nodes in Wireless Sensor Networks (WSNs). Mobile sinks are required to inform sensor nodes about their new location information whenever necessary. However, frequent location updates from mobile sinks can lead to both rapid energy consumption of sensor nodes and increased collisions in wireless transmissions. We propose a new solution with adaptive location updates for mobile sinks to resolve this problem. When a sink moves, it only needs to broadcast its location information within a local area other than among the entire network. Both theoretical analysis and simulation studies show that this solution consumes less energy in each sensor node and also decreases collisions in wireless transmissions, which can be used in large-scale WSNs.

101 citations

Journal ArticleDOI
TL;DR: Experimental results demonstrate that the CCM algorithm outperforms both LEACH and PEGASIS in terms of the product of consumed energy and delay, weighting the overall performance of both energy consumption and transmission delay.
Abstract: Wireless sensor networks (WSNs) are an emerging technology for monitoring physical world. Different from the traditional wireless networks and ad hoc networks, the energy constraint of WSNs makes energy saving become the most important goal of various routing algorithms. For this purpose, a cluster based routing algorithm LEACH (low energy adaptive clustering hierarchy) has been proposed to organize a sensor network into a set of clusters so that the energy consumption can be evenly distributed among all the sensor nodes. Periodical cluster head voting in LEACH, however, consumes non-negligible energy and other resources. While another chain-based algorithm PEGASIS (power- efficient gathering in sensor information systems) can reduce such energy consumption, it causes a longer delay for data transmission. In this paper, we propose a routing algorithm called CCM (Chain-Cluster based Mixed routing), which makes full use of the advantages of LEACH and PEGASIS, and provide improved performance. It divides a WSN into a few chains and runs in two stages. In the first stage, sensor nodes in each chain transmit data to their own chain head node in parallel, using an improved chain routing protocol. In the second stage, all chain head nodes group as a cluster in a self- organized manner, where they transmit fused data to a voted cluster head using the cluster based routing. Experimental results demonstrate that our CCM algorithm outperforms both LEACH and PEGASIS in terms of the product of consumed energy and delay, weighting the overall performance of both energy consumption and transmission delay.

100 citations


Cites background from "Adaptive protocols for information ..."

  • ...In SPIN, whenever a packet is available, a node only broadcasts a description instead of the packet itself and sends it only to the sensor nodes that express interest (Heinzelman et al. 1999; Kulik et al. 2002)....

    [...]

  • ...Flooding is a classical protocol to relay data in WSNs but with several serious deficiencies such as implosion, overlaping and resource blindness(Akyildiz et al. 2002; Heinzelman et al. 1999)....

    [...]

Proceedings ArticleDOI
27 May 2005
TL;DR: The architecture of the wireless sensor network and WSN features are introduced and a variety of classifications of them are presented; recent routing protocols for wireless sensor networks are studied and contrasts and compares representative routing protocols.
Abstract: Wireless sensor networks (WSNs) are the products which integrate sensor techniques, embedded techniques, distributed. information processing and communication techniques. The appearance of the wireless sensor network is a revolution in information sensing and detection. Recently, both academia and industry have shown great interest in sensor networks. The paper introduces the architecture of the wireless sensor network and WSN features. It then studies recent routing protocols for wireless sensor networks and presents a variety of classifications of them; it also contrasts and compares representative routing protocols. Several future open issues of the wireless sensor networks are put forward.

100 citations

Proceedings ArticleDOI
15 Jun 2009
TL;DR: The effect of adding a relay network to the network of body sensors to reduce energy consumption of sensor nodes when transmitting data to the sink is investigated.
Abstract: Wireless body area sensor networks will revolutionize health care services by remote, continuous and non-invasive monitoring. Body area sensor networks (BASN) should monitor various physiological parameters of a person for a long period of time. Thus, efficient energy usage in sensor nodes is essential in order to provide a long life time for the network. This paper investigates the effect of adding a relay network to the network of body sensors to reduce energy consumption of sensor nodes when transmitting data to the sink.

100 citations


Cites background from "Adaptive protocols for information ..."

  • ...Multihop protocols can be categorized into three groups: tree-based [14], chain-based [15] and clusterbased [16]....

    [...]

Proceedings ArticleDOI
28 Aug 2005
TL;DR: This work proposes a novel communication efficient topology control algorithm for each wireless node to select communication neighbors and adjust its transmission power, such that all nodes together self-form a topology that is energy efficient simultaneously for both unicast and broadcast communications.
Abstract: We propose a novel communication efficient topology control algorithm for each wireless node to select communication neighbors and adjust its transmission power, such that all nodes together self-form a topology that is energy efficient simultaneously for both unicast and broadcast communications. We prove that the proposed topology is planar, which guarantees packet delivery if a certain localized routing method is used; it is power efficient for unicast-- the energy needed to connect any pair of nodes is within a small constant factor of the minimum under a common power attenuation model; it is efficient for broadcast: the energy consumption for broadcasting data on top of it is asymptotically the best compared with structures constructed locally; it has a constant bounded logical degree, which will potentially reduce interference and signal contention. We further prove that the average physical degree of all nodes is bounded by a small constant. To the best of our knowledge, this is the first communication-efficient distributed algorithm to achieve all these properties. Previously, only a centralized algorithm was reported in [3]. Moreover, by assuming that the ID and position of every node can be represented in O(log n) bits for a wireless network of n nodes, our method uses at most 13n messages, where each message is of O(log n) bits. We also show that this structure can be efficiently updated for dynamical network environment. Our theoretical results are corroborated in the simulations.

96 citations


Cites background from "Adaptive protocols for information ..."

  • ...Similarly, several information dissemination protocols in wireless sensor networks use some forms of broadcast/multicast for solicitation or collection of sensor information [14, 16, 52]....

    [...]

References
More filters
Proceedings ArticleDOI
01 Oct 1994
TL;DR: The modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile hosts.
Abstract: An ad-hoc network is the cooperative engagement of a collection of Mobile Hosts without the required intervention of any centralized Access Point. In this paper we present an innovative design for the operation of such ad-hoc networks. The basic idea of the design is to operate each Mobile Host as a specialized router, which periodically advertises its view of the interconnection topology with other Mobile Hosts within the network. This amounts to a new sort of routing protocol. We have investigated modifications to the basic Bellman-Ford routing mechanisms, as specified by RIP [5], to make it suitable for a dynamic and self-starting network mechanism as is required by users wishing to utilize ad hoc networks. Our modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile Hosts. Finally, we describe the ways in which the basic network-layer routing can be modified to provide MAC-layer support for ad-hoc networks.

6,877 citations

Proceedings ArticleDOI
25 Oct 1998
TL;DR: The results of a derailed packet-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocols, which cover a range of designchoices: DSDV,TORA, DSR and AODV are presented.
Abstract: An ad hoc networkis a collwtion of wirelessmobilenodes dynamically forminga temporarynetworkwithouttheuseof anyexistingnetworkirrfrastructureor centralizedadministration.Dueto the limitedtransmissionrange of ~vlrelessnenvorkinterfaces,multiplenetwork“hops”maybe neededfor onenodeto exchangedata ivithanotheracrox thenetwork.Inrecentyears, a ttiery of nelvroutingprotocols~geted specificallyat this environment havebeen developed.but little pcrfomrartwinformationon mch protocol and no ralistic performancecomparisonbehvwrrthem ISavailable. ~Is paper presentsthe results of a derailedpacket-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocolsthatcovera range of designchoices: DSDV,TORA, DSR and AODV. \Vehave extended the /~r-2networksimulatorto accuratelymodelthe MACandphysical-layer behaviorof the IEEE 802.1I wirelessLANstandard,includinga realistic wtrelesstransmissionchannelmodel, and present the resultsof simulations of net(vorksof 50 mobilenodes.

5,147 citations


"Adaptive protocols for information ..." refers background in this paper

  • ...Recently, mobile ad hoc routing protocols have become an active area of research [3, 10, 16, 18, 22]....

    [...]

Proceedings ArticleDOI
09 Apr 1997
TL;DR: The proposed protocol is a new distributed routing protocol for mobile, multihop, wireless networks that is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks.
Abstract: We present a new distributed routing protocol for mobile, multihop, wireless networks. The protocol is one of a family of protocols which we term "link reversal" algorithms. The protocol's reaction is structured as a temporally-ordered sequence of diffusing computations; each computation consisting of a sequence of directed link reversals. The protocol is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks. In these networks, the protocol's reaction to link failures typically involves only a localized "single pass" of the distributed algorithm. This capability is unique among protocols which are stable in the face of network partitions, and results in the protocol's high degree of adaptivity. This desirable behavior is achieved through the novel use of a "physical or logical clock" to establish the "temporal order" of topological change events which is used to structure (or order) the algorithm's reaction to topological changes. We refer to the protocol as the temporally-ordered routing algorithm (TORA).

2,211 citations


"Adaptive protocols for information ..." refers background in this paper

  • ...Recently, mobile ad hoc routing protocols have become an active area of research [3, 10, 16, 18, 22]....

    [...]

Proceedings ArticleDOI
01 Dec 1987
TL;DR: This paper descrikrs several randomized algorit, hms for dist,rihut.ing updates and driving t,he replicas toward consist,c>nc,y.
Abstract: Whru a dilt~lhSC is replicated at, many sites2 maintaining mutual consistrnry among t,he sites iu the fac:e of updat,es is a signitirant problem. This paper descrikrs several randomized algorit,hms for dist,rihut.ing updates and driving t,he replicas toward consist,c>nc,y. The algorit Inns are very simple and require few guarant,ees from the underlying conllllunicat.ioll system, yc+ they rnsutc t.hat. the off(~c~t, of (‘very update is evcnt,uwlly rf+irt-ted in a11 rq1ica.s. The cost, and parformancc of t,hr algorithms arc tuned I>? c%oosing appropriat,c dist,rilMions in t,hc randoinizat,ioii step. TIN> idgoritlmls ilr(’ c*los~*ly analogoIls t,o epidemics, and t,he epidcWliolog)litc\ratiirc, ilitlh iii Illld~~rsti4lldill~ tlicir bc*liavior. One of tlW i$,oritlims 11&S brc>n implrmcWrd in the Clraringhousr sprv(brs of thr Xerox C’orporat~c~ Iiitcrnc4, solviiig long-standing prol>lf~lns of high traffic and tlatirl>ilsr inconsistcllcp.

1,958 citations


"Adaptive protocols for information ..." refers background or methods in this paper

  • ...Using gossiping and broadcasting algorithms to disseminate information in distributed systems has been extensively explored in the literature, often as epidemic algorithms [6]....

    [...]

  • ...In [1, 6], gossiping is used to maintain database consistency, while in [18], gossiping is used as a mechanism to achieve fault tolerance....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors specify extensions to two common internetwork routing algorithms (distancevector routing and link-state routing) to support low-delay datagram multicasting beyond a single LAN, and discuss how the use of multicast scope control and hierarchical multicast routing allows the multicast service to scale up to large internetworks.
Abstract: Multicasting, the transmission of a packet to a group of hosts, is an important service for improving the efficiency and robustness of distributed systems and applications. Although multicast capability is available and widely used in local area networks, when those LANs are interconnected by store-and-forward routers, the multicast service is usually not offered across the resulting internetwork. To address this limitation, we specify extensions to two common internetwork routing algorithms—distance-vector routing and link-state routing—to support low-delay datagram multicasting beyond a single LAN. We also describe modifications to the single-spanning-tree routing algorithm commonly used by link-layer bridges, to reduce the costs of multicasting in large extended LANs. Finally, we discuss how the use of multicast scope control and hierarchical multicast routing allows the multicast service to scale up to large internetworks.

1,365 citations