scispace - formally typeset
Search or ask a question
BookDOI

Adaptive Signal Processing

About: The article was published on 1986-01-01. It has received 2843 citations till now. The article focuses on the topics: Space-time adaptive processing & Adaptive beamformer.
Citations
More filters
Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

Journal ArticleDOI
01 May 1993
TL;DR: The architecture and learning procedure underlying ANFIS (adaptive-network-based fuzzy inference system) is presented, which is a fuzzy inference System implemented in the framework of adaptive networks.
Abstract: The architecture and learning procedure underlying ANFIS (adaptive-network-based fuzzy inference system) is presented, which is a fuzzy inference system implemented in the framework of adaptive networks. By using a hybrid learning procedure, the proposed ANFIS can construct an input-output mapping based on both human knowledge (in the form of fuzzy if-then rules) and stipulated input-output data pairs. In the simulation, the ANFIS architecture is employed to model nonlinear functions, identify nonlinear components on-line in a control system, and predict a chaotic time series, all yielding remarkable results. Comparisons with artificial neural networks and earlier work on fuzzy modeling are listed and discussed. Other extensions of the proposed ANFIS and promising applications to automatic control and signal processing are also suggested. >

15,085 citations


Cites methods from "Adaptive Signal Processing"

  • ...Note that the consequent parameters can also be updated by the Widrow-Hoff LMS algorithm [63], as reported in [46]....

    [...]

  • ...The nonlinearity and structured knowledge representation of ANFIS are the primary advantages over classical linear approaches in adaptive filtering [8] and adaptive signal processing [63], such as identification, inverse modeling, predictive coding, adaptive channel equalization, adaptive interference (noise or echo) canceling, etc....

    [...]

Journal ArticleDOI
Simon Haykin1
TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Abstract: Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understanding-by-building to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: /spl middot/ highly reliable communication whenever and wherever needed; /spl middot/ efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radio-scene analysis. 2) Channel-state estimation and predictive modeling. 3) Transmit-power control and dynamic spectrum management. This work also discusses the emergent behavior of cognitive radio.

12,172 citations

Journal ArticleDOI
TL;DR: This article introduces a class of incremental learning procedures specialized for prediction – that is, for using past experience with an incompletely known system to predict its future behavior – and proves their convergence and optimality for special cases and relation to supervised-learning methods.
Abstract: This article introduces a class of incremental learning procedures specialized for prediction – that is, for using past experience with an incompletely known system to predict its future behavior. Whereas conventional prediction-learning methods assign credit by means of the difference between predicted and actual outcomes, the new methods assign credit by means of the difference between temporally successive predictions. Although such temporal-difference methods have been used in Samuel's checker player, Holland's bucket brigade, and the author's Adaptive Heuristic Critic, they have remained poorly understood. Here we prove their convergence and optimality for special cases and relate them to supervised-learning methods. For most real-world prediction problems, temporal-difference methods require less memory and less peak computation than conventional methods and they produce more accurate predictions. We argue that most problems to which supervised learning is currently applied are really prediction problems of the sort to which temporal-difference methods can be applied to advantage.

4,803 citations

Journal ArticleDOI
TL;DR: An overview of beamforming from a signal-processing perspective is provided, with an emphasis on recent research.
Abstract: An overview of beamforming from a signal-processing perspective is provided, with an emphasis on recent research. Data-independent, statistically optimum, adaptive, and partially adaptive beamforming are discussed. Basic notation, terminology, and concepts are included. Several beamformer implementations are briefly described. >

4,122 citations

References
More filters
Book
01 Jan 1969

6,650 citations

Book
01 Jan 1947
TL;DR: The first formal introduction to linear algebra, a branch of modern mathematics that studies vectors and vector spaces, was the Finite Dimensional Vector Spaces (FDVSP) by Halmos as discussed by the authors.
Abstract: As a newly minted Ph.D., Paul Halmos came to the Institute for Advanced Study in 1938--even though he did not have a fellowship--to study among the many giants of mathematics who had recently joined the faculty. He eventually became John von Neumann's research assistant, and it was one of von Neumann's inspiring lectures that spurred Halmos to write Finite Dimensional Vector Spaces. The book brought him instant fame as an expositor of mathematics. Finite Dimensional Vector Spaces combines algebra and geometry to discuss the three-dimensional area where vectors can be plotted. The book broke ground as the first formal introduction to linear algebra, a branch of modern mathematics that studies vectors and vector spaces. The book continues to exert its influence sixty years after publication, as linear algebra is now widely used, not only in mathematics but also in the natural and social sciences, for studying such subjects as weather problems, traffic flow, electronic circuits, and population genetics. In 1983 Halmos received the coveted Steele Prize for exposition from the American Mathematical Society for "his many graduate texts in mathematics dealing with finite dimensional vector spaces, measure theory, ergodic theory, and Hilbert space."

1,238 citations

Book
01 Jan 1986

543 citations

Journal ArticleDOI
TL;DR: In this paper, a new method is proposed for estimating the frequency domain structure of digital signals which may be characterized as having a narrow-band, rapidly time-varying spectrum.
Abstract: A new method is proposed for estimating the frequency domain structure of digital signals which may be characterized as having a narrow-band, rapidly time-varying spectrum. The estimated parameter is termed the digital instantaneous frequency of the input and is defined in a manner similar to that used previously to describe frequency-modulated, continuous-time signals. Instantaneous frequency estimates are derived from a spectral computation based on the use of an adaptive linear prediction filter. The proposed method differs from previous techniques in that the coefficients of this filter are continuously updated as each new input data sample is received using a simple time-domain algorithm, A derivation of the algorithm and its properties are presented. Numerical examples are included which illustrate the properties of the procedure.

336 citations