scispace - formally typeset
Open AccessJournal ArticleDOI

Addendum to the paper: “Artin prime producing quadratics”, by P. Moree

Yves Gallot, +1 more
- 24 Feb 2015 - 
- Vol. 85, Iss: 1, pp 87-88
Reads0
Chats0
TLDR
Moree as mentioned in this paper improved Akbary and Scholten's record by Gallot (2004) by slightly improving on the then record, due to Gallot's improvement on the record obtained by Akbahary and scholten.
Abstract
A record mentioned in the paper by Moree (Abh Math Sem Univ Hamburg 77:109–127, 2007) was recently improved on by Akbary and Scholten. However, the record mentioned was not the then record. The then record, due to Gallot (2004), actually slightly improves on that obtained recently by Akbary and Scholten.

read more

Content maybe subject to copyright    Report

arXiv:1501.02350v1 [math.NT] 10 Jan 2015
Addendum to the paper: “Artin Prime
Producing Quadratics” [Abh. Math. Sem. Univ.
Hamburg 77 (2007), 109–127; MR2379332
(2008m:11194)] by P. Moree
Yves Gallot and Pieter Moree
Abstract
A record mentioned in the paper was recently improved on by Akbary
and Scholten. However, the record mentioned was not the then record.
The then record, due to Gallot (2004), actually slightly improves on that
obtained recently by Akbary and Scholten.
Given an integer g and a polynomial f(X) Z[X], let p
1
(g, f), p
2
(g, f), . . . be the
sequence of primes that is obtained on going through the sequence f (0), f (1), . . .
and writing down the primes not dividing g as they appear (called Artin primes).
We let r be the la r gest integer r (if this exists) such that g is a primitive root
mod p for all primes p
j
(g, f) with 1 j r. We let c
g
(f) be the number of
distinct primes amongst p
j
(g, f) with 1 j r.
In [6] the problem was addressed of finding an integer g and a quadratic
polynomial f such that c
g
(f) is as larg e as possible a nd it was stated that
c
g
(f) = 31082
was the current record (obtained by Yves Ga llot). On preparing the paper for
publication (fall 2006) the author failed to recall an e-mail by Gallot from June
2004. That e-mail actually stated what in 2006 still would be the t r ue current
record (due to Gallot), namely
c
g
(f) = 38639.
It is obtained on taking f (X) = 32X
2
+39721664X +182215381147285848449
and g = 593856338459898. Perhaps a mo r e elegant reformulation is: for those
38639 integers n in [620651, 1749283] for which
h(n) := 32n
2
+ 182215368820640606817
is prime, the number 593856338459898 is a primitive root modulo h(n).
In a recent paper by Akbary and Scholten [1] the authors find a g and a
quadratic f such that c
g
(f) = 37951. This improves on the record indicated in
[6], but falls slightly below the ‘hidden record’ indicated a bove.
1

Akbary a nd Scholten go beyond Moree in that t hey in addition consider the
case where f linear and f cubic and obtain here record values for consecutive
Artin primes for certain integers g of 6355, respectively 10011.
Finally, let us mention some highly interesting work by Pollack [7]. He merges
the method of proof of Hooley [3] of Artin’s conjecture (under GRH) with the
method of Maynard-Tao [4, 5] in order to produce bounded gaps between primes:
On GRH for every nonsquare g 6= 1 and every m, there are infinitely many
runs of m consecutive primes all possessing g as a primitive root and lying in an
interval of order O
m
(1). For related work see Baker and Pollack [2].
References
[1] A. Akbary a nd K. Scholten, Artin prime producing polynomials,
arXiv:1310.5198, to appear in Mathematics of Computation. (Electronically
published in December 2014.)
[2] R.C. Baker and P. Pollack, Bounded gaps between primes with a given prim-
itive root, II, arXiv:1407.7186.
[3] C. Hooley, On Artin’s conjecture, J. Reine Angew. Math. 225 (1967), 209–
220.
[4] J. Mayna r d, Small gaps between primes, Ann. Math., to appear .
[5] D.H.J. Polymath, Variants of the Selberg sieve, and bounded intervals con-
taining many primes, arXiv:1407.4897.
[6] P. Moree, Artin prime producing quadratics, arXiv:1407.4897. Abh. Math.
Sem. Univ. Hamburg 77 (2007), 109–127.
[7] P. Pollack, Bounded gaps between primes with a given primitive root,
arXiv:1404.4007v3.
2
References
More filters
Journal Article

On Artin's conjecture.

TL;DR: The problem of determining the prime numbers p for which a given number a is a primitive root, modulo JP, was first considered by Gauss in the Disquisitiones Arithmeticae that is devoted to the periodie deeimal expansions of fraetions with denominator p.
Journal ArticleDOI

Small gaps between primes

TL;DR: In this paper, the GPY sieve method for studying prime k-tuples and small gaps between primes was introduced and it was shown that for each k, the prime k -tuples conjecture holds for a positive proportion of admissible k-toples.
Journal ArticleDOI

A heuristic asymptotic formula concerning the distribution of prime numbers

TL;DR: In this article, the authors consider polynomials in one variable with all coefficients integral and leading coefficients positive, their degrees being hi, h2, **, hk respectively, and assume that each polynomial is irreducible over the field of rational numbers and no two of them differ by a constant factor.
Journal ArticleDOI

Variants of the Selberg sieve, and bounded intervals containing many primes

TL;DR: In particular, this paper showed that for any admissible triple (h1,h2,h3), there are infinitely many n for which at least two of n+h 1,n+h 2,h 3 are prime, and also showed that either the twin prime conjecture holds or the even Goldbach conjecture is asymptotically true if one allows an additive error of at most 2, or both.
Journal ArticleDOI

Bounded gaps between primes with a given primitive root

TL;DR: In this paper, the generalized Riemann hypothesis (GRH) was used to show that there are infinitely many primes for which g is a primitive root, and that these primes can be expressed as the sequence of primes possessing g as a root.