scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection

15 Jun 2017-Materials & Design (Elsevier)-Vol. 124, Iss: 124, pp 143-157
TL;DR: In this article, the effect of build orientation, layer thickness and feed rate on the mechanical performance of PLA samples manufactured with a low-cost 3D printer is investigated, where tensile and three-point bending tests are carried out to determine the mechanical response of the printed specimens.
About: This article is published in Materials & Design.The article was published on 2017-06-15. It has received 877 citations till now. The article focuses on the topics: Ductility.
Citations
More filters
Journal ArticleDOI
TL;DR: This is a comprehensive literature review in the domain of FDM focused on identifying the direction for future work to enhance the acceptability of F DM printed parts in industries.
Abstract: Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique. Total 211 research papers published during the past 26 years, that is, from the year 1994 to 2019 are critically reviewed. Based on the literature review, research gaps are identified and the scope for future work is discussed.,Literature review in the domain of FDM is categorized into five sections – (i) process parameter optimization, (ii) environmental factors affecting the quality of printed parts, (iii) post-production finishing techniques to improve quality of parts, (iv) numerical simulation of process and (iv) recent advances in FDM. Summary of major research work in FDM is presented in tabular form.,Based on literature review, research gaps are identified and scope of future work in FDM along with roadmap is discussed.,In the present paper, literature related to chemical, electric and magnetic properties of FDM parts made up of various filament feedstock materials is not reviewed.,This is a comprehensive literature review in the domain of FDM focused on identifying the direction for future work to enhance the acceptability of FDM printed parts in industries.

166 citations

Journal ArticleDOI
TL;DR: In this article, the influence of three multi-material processing parameters, i.e., nozzle temperature, building stage temperature and printing speed, on the interfacial bonding strength of thermoplastic polyurethane (TPU)/acrylonitrile butadiene styrene (ABS) bi-material structures was experimentally investigated.

160 citations

Journal ArticleDOI
TL;DR: A customized FDM system was developed for polyether-ether-ketone (PEEK) materials printing and the results demonstrated that the printers have appropriate mechanical properties.
Abstract: Compared to the common selective laser sintering (SLS) manufacturing method, fused deposition modeling (FDM) seems to be an economical and efficient three-dimensional (3D) printing method for high temperature polymer materials in medical applications. In this work, a customized FDM system was developed for polyether-ether-ketone (PEEK) materials printing. The effects of printing speed, layer thickness, printing temperature and filling ratio on tensile properties were analyzed by the orthogonal test of four factors and three levels. Optimal tensile properties of the PEEK specimens were observed at a printing speed of 60 mm/s, layer thickness of 0.2 mm, temperature of 370 °C and filling ratio of 40%. Furthermore, the impact and bending tests were conducted under optimized conditions and the results demonstrated that the printed PEEK specimens have appropriate mechanical properties.

160 citations


Cites background from "Additive manufacturing of PLA struc..."

  • ...[11] investigated the influences of build orientation, layer thickness and feed rate on the mechanical performance of PLA specimens....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the various abilities and inabilities of fused filament fabrication (FFF) and generate a roadmap of futuristic tasks for better outcomes, which will act as a first-hand reference to the young researchers and senior scientist.

151 citations

Journal ArticleDOI
23 Apr 2018
TL;DR: A fused deposition modeling method was used in this research to investigate the possibility of improving the mechanical properties of poly(lactic acid) by changing the thermal conditions of the printing process, which indicated the highly beneficial effect of increased bed temperature.
Abstract: A fused deposition modeling method was used in this research to investigate the possibility of improving the mechanical properties of poly(lactic acid) by changing the thermal conditions of the printing process. Sample models were prepared while varying a wide range of printing parameters, including bed temperature, melt temperature, and raster angle. Certain samples were also thermally treated by annealing. The prepared materials were subjected to a detailed thermomechanical analysis (differential scanning calorimetry, dynamic mechanical analysis, heat deflection temperature (HDT)), which allowed the formulation of several conclusions. For all prepared samples, the key changes in mechanical properties are related to the content of the poly(lactic acid) crystalline phase, which led to superior properties in annealed samples. The results also indicate the highly beneficial effect of increased bed temperature, where the best results were obtained for the samples printed at 105 °C. Compared to the reference ...

148 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the properties of FDM parts fabricated by the FDM 1650 were analyzed using a Design of Experiment (DOE) approach, such as raster orientation, air gap, bead width, color and model temperature.
Abstract: Rapid Prototyping (RP) technologies provide the ability to fabricate initial prototypes from various model materials. Stratasys Fused Deposition Modeling (FDM) is a typical RP process that can fabricate prototypes out of ABS plastic. To predict the mechanical behavior of FDM parts, it is critical to understand the material properties of the raw FDM process material, and the effect that FDM build parameters have on anisotropic material properties. This paper characterizes the properties of ABS parts fabricated by the FDM 1650. Using a Design of Experiment (DOE) approach, the process parameters of FDM, such as raster orientation, air gap, bead width, color, and model temperature were examined. Tensile strengths and compressive strengths of directionally fabricated specimens were measured and compared with injection molded FDM ABS P400 material. For the FDM parts made with a 0.003 inch overlap between roads, the typical tensile strength ranged between 65 and 72 percent of the strength of injection molded ABS P400. The compressive strength ranged from 80 to 90 percent of the injection molded FDM ABS. Several build rules for designing FDM parts were formulated based on experimental results.

1,886 citations

Journal ArticleDOI
TL;DR: In this article, a carbon fiber reinforced plastic (CFRP) composite is used for Fused Deposition Modeling (FDM) of thermoplastic matrix CFRP composites.
Abstract: Additive manufacturing (AM) technologies have been successfully applied in various applications. Fused deposition modeling (FDM), one of the most popular AM techniques, is the most widely used method for fabricating thermoplastic parts those are mainly used as rapid prototypes for functional testing with advantages of low cost, minimal wastage, and ease of material change. Due to the intrinsically limited mechanical properties of pure thermoplastic materials, there is a critical need to improve mechanical properties for FDM-fabricated pure thermoplastic parts. One of the possible methods is adding reinforced materials (such as carbon fibers) into plastic materials to form thermoplastic matrix carbon fiber reinforced plastic (CFRP) composites those could be directly used in the actual application areas, such as aerospace, automotive, and wind energy. This paper is going to present FDM of thermoplastic matrix CFRP composites and test if adding carbon fiber (different content and length) can improve the mechanical properties of FDM-fabricated parts. The CFRP feedstock filaments were fabricated from plastic pellets and carbon fiber powders for FDM process. After FDM fabrication, effects on the tensile properties (including tensile strength, Young's modulus, toughness, yield strength, and ductility) and flexural properties (including flexural stress, flexural modulus, flexural toughness, and flexural yield strength) of specimens were experimentally investigated. In order to explore the parts fracture reasons during tensile and flexural tests, fracture interface of CFRP composite specimens after tensile testing and flexural testing was observed and analyzed using SEM micrograph.

1,133 citations

Journal ArticleDOI
TL;DR: In this paper, five important process parameters such as layer thickness, orientation, raster angle, Raster width and air gap are considered and their influence on three responses such as tensile, flexural and impact strength of test specimen is studied.

1,001 citations

Journal ArticleDOI
TL;DR: A review of the research carried out so far in determining and optimizing the process parameters of the FDM process can be found in this paper, where several statistical designs of experiments and optimization techniques used for the determination of optimum process parameters have been examined.
Abstract: Fused deposition modeling (FDM) is one of the most popular additive manufacturing technologies for various engineering applications. FDM process has been introduced commercially in early 1990s by Stratasys Inc., USA. The quality of FDM processed parts mainly depends on careful selection of process variables. Thus, identification of the FDM process parameters that significantly affect the quality of FDM processed parts is important. In recent years, researchers have explored a number of ways to improve the mechanical properties and part quality using various experimental design techniques and concepts. This article aims to review the research carried out so far in determining and optimizing the process parameters of the FDM process. Several statistical designs of experiments and optimization techniques used for the determination of optimum process parameters have been examined. The trends for future FDM research in this area are described.

925 citations

Journal ArticleDOI
TL;DR: The RepRap as discussed by the authors is an open-source self-replicating rapid prototyper that makes 3D polymer-based printers readily available to the public at low costs.

911 citations