scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties

TL;DR: In this paper, the authors present a critical analysis and overview of the relationship between processing parameters, microstructure, and mechanical properties of LMD components made from the Ti-6Al-4V alloy.
About: This article is published in Journal of Alloys and Compounds.The article was published on 2019-10-05. It has received 181 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide a critical and in-depth evaluation of laser powder bed fusion (LPBF) and laser directed energy deposition (LDED) technologies of the mentioned aeroengine materials.
Abstract: Aerospace is a key market driver for the advancement of additive manufacturing (AM) due to the huge demands in high-mix low-volume production of high-value parts, integrated complex part geometries and simplified fabrication workflow. Rapid and significant progress has been made in the laser additive manufacturing (LAM) of aeroengine materials, including the advanced high-strength steels, nickel-based superalloys and titanium-based alloys. Despite the extensive investigation of these three families of materials by the research community, there is a lack of comprehensive review on LAM of high strength steels, and existing gaps in published reviews on Ti-based alloys and Ni-based superalloys. Furthermore, although emerging materials such as high/medium entropy alloys and heterostructured materials exhibit promising mechanical performance, rigorous characterization, testing, qualification, and certification are still required before actual application in engine parts. Thus, it is still important and relevant to have a deep understanding on the relationship between process parameters – microstructures – mechanical properties in these widely used aeroengine materials, to drive the development of superior high-value alloys. This review aims to provide a critical and in-depth evaluation of laser powder bed fusion (LPBF) and laser directed energy deposition (LDED) technologies of the mentioned aeroengine materials. The review will summarize the material properties, performance envelops and outlines the research gaps of these aeroengine materials. Furthermore, perspectives on research opportunities, materials development, and new R&D approaches of LAM for the aeroengine materials are also highlighted.

114 citations

Journal ArticleDOI
15 Sep 2021-Polymers
TL;DR: In this article, a comparative review of polymer-based 3D printing processes is presented, highlighting different aspects of these printing methods and serving as a guide to select a suitable print material and 3D print technique for the targeted polymeric material-based applications.
Abstract: Additive manufacturing (AM) or 3D printing is a digital manufacturing process and offers virtually limitless opportunities to develop structures/objects by tailoring material composition, processing conditions, and geometry technically at every point in an object. In this review, we present three different early adopted, however, widely used, polymer-based 3D printing processes; fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA) to create polymeric parts. The main aim of this review is to offer a comparative overview by correlating polymer material-process-properties for three different 3D printing techniques. Moreover, the advanced material-process requirements towards 4D printing via these print methods taking an example of magneto-active polymers is covered. Overall, this review highlights different aspects of these printing methods and serves as a guide to select a suitable print material and 3D print technique for the targeted polymeric material-based applications and also discusses the implementation practices towards 4D printing of polymer-based systems with a current state-of-the-art approach.

90 citations

Journal ArticleDOI
22 Oct 2021-Science
TL;DR: Additive manufacturing is a revolutionary technology that offers a different pathway for material processing and design as mentioned in this paper, however, innovations in either new materials or new processing technologies have not yet materialized.
Abstract: Additive manufacturing is a revolutionary technology that offers a different pathway for material processing and design. However, innovations in either new materials or new processing technologies ...

90 citations

Journal ArticleDOI
20 Apr 2021-JOM
TL;DR: In this article, the authors focus on the processing-microstructure-property relationships in the DED-processed titanium alloys (Ti-6Al-4V and beyond) with the following aspects: (1) microstructure evolution induced by solidification, thermal cycles, and post-processing heat treatment; (2) tensile properties of as-deposited and heat-treated titanium alloy; (3) defects, residual stresses, and fatigue properties; and (4) micro/nanomechanical properties.
Abstract: Titanium alloys are expensive and difficult to process into large complex components for aerospace applications. Directed energy deposition (DED), one of the additive manufacturing (AM) technologies, offers a high deposition rate, being suitable for fabricating large metallic components. So far, most review articles on the AM of titanium discuss the popular powder bed fusion method with the emphasis on the “workhorse” titanium alloy—Ti-6Al-4V. There have been few review articles on the DED process of a broad range of titanium alloys—near-α, β, and other α + β alloys beyond Ti-6Al-4V. This article focuses on the processing–microstructure–property relationships in the DED-processed titanium alloys (Ti-6Al-4V and beyond) with the following aspects: (1) microstructure evolution induced by solidification, thermal cycles, and post-processing heat treatment; (2) tensile properties of as-deposited and heat-treated titanium alloys; (3) defects, residual stresses, and fatigue properties; and (4) micro/nanomechanical properties. The article concludes with perspectives about future directions in this field.

81 citations

Journal ArticleDOI
TL;DR: In this article, the welding parameters and the effects of this new method on the mechanical properties and microstructures are investigated, and the usage areas of the AM technology and methods are described.
Abstract: Additive manufacturing (AM) technology, in other words “layered manufacturing” or “3D printer technology” has been developing rapidly in recent years. Unlike the traditional manufacturing method (TM), the working principle of AM technology is to create layer-based production by deposition the layers on top of each other. Owing to its advantages such as material saving, lower cost, the ability to produce parts without the need for molds and the design flexibility in complex shaped parts, it has brought a breath of fresh air to the areas where it is used primarily medical, aerospace and automotive. However, the parts produced by AM method have dimensional limitations. According to recent studies, in order to eliminate this problem, metal materials produced with AM can be combined with commonly used by different welding methods so that large parts can be obtained. In this study, these welding methods are explained and recent researches are examined. AM technology and methods are introduced. The usage areas of the method are described. In addition, the welding parameters and the effects of this new method on the mechanical properties and microstructures are investigated.

81 citations

References
More filters
Journal ArticleDOI
TL;DR: Research on the tissue engineering of bone and cartilage from the polymeric scaffold point of view is reviews from a biodegradable and bioresorbable perspective.

4,914 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out in this paper, where the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed.
Abstract: Freedom of design, mass customisation, waste minimisation and the ability to manufacture complex structures, as well as fast prototyping, are the main benefits of additive manufacturing (AM) or 3D printing. A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out. In particular, the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed. The current state of materials development, including metal alloys, polymer composites, ceramics and concrete, was presented. In addition, this paper discussed the main processing challenges with void formation, anisotropic behaviour, the limitation of computer design and layer-by-layer appearance. Overall, this paper gives an overview of 3D printing, including a survey on its benefits and drawbacks as a benchmark for future research and development.

4,159 citations

Book
01 Jan 2009
TL;DR: Gibson et al. as discussed by the authors presented a comprehensive overview of additive manufacturing technologies plus descriptions of support technologies like software systems and post-processing approaches, and provided systematic solutions for process selection and design for AM Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing.
Abstract: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing deals with various aspects of joining materials to form parts. Additive Manufacturing (AM) is an automated technique for direct conversion of 3D CAD data into physical objects using a variety of approaches. Manufacturers have been using these technologies in order to reduce development cycle times and get their products to the market quicker, more cost effectively, and with added value due to the incorporation of customizable features. Realizing the potential of AM applications, a large number of processes have been developed allowing the use of various materials ranging from plastics to metals for product development. Authors Ian Gibson, David W. Rosen and Brent Stucker explain these issues, as well as: Providing a comprehensive overview of AM technologies plus descriptions of support technologies like software systems and post-processing approaches Discussing the wide variety of new and emerging applications like micro-scale AM, medical applications, direct write electronics and Direct Digital Manufacturing of end-use components Introducing systematic solutions for process selection and design for AM Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing is the perfect book for researchers, students, practicing engineers, entrepreneurs, and manufacturing industry professionals interested in additive manufacturing.

3,087 citations

Journal ArticleDOI
27 Feb 1987-Science
TL;DR: A novel foam structure is presented, which exhibits a negative Poisson's ratio, and such a material expands laterally when stretched, in contrast to ordinary materials.
Abstract: A novel foam structure is presented, which exhibits a negative Poisson's ratio. Such a material expands laterally when stretched, in contrast to ordinary materials.

2,871 citations

Book
01 Dec 1994
TL;DR: The Materials Properties Handbook: Titanium Alloys as discussed by the authors provides a data base for information on titanium and its alloys, and the selection of specific alloys for specific applications, including applications, physical properties, corrosion, mechanical properties (including design allowances where available), fatigue, fracture properties, and elevated temperature properties.
Abstract: Comprehensive datasheets on more than 60 titanium alloys More than 200 pages on metallurgy and fabrication procedures Input from more than 50 contributors from several countries Careful editorial review for accuracy and usefulness Materials Properties Handbook: Titanium Alloys provides a data base for information on titanium and its alloys, and the selection of specific alloys for specific applications The most comprehensive titanium data package ever assembled provides extensive information on applications, physical properties, corrosion, mechanical properties (including design allowances where available), fatigue, fracture properties, and elevated temperature properties The appropriate specifications for each alloy are included This international effort has provided a broad information base that has been compiled and reviewed by leading experts within the titanium industry, from several countries, encompassing numerous technology areas Inputs have been obtained from the titanium industry, fabricators, users, government and academia This up-to-date package covers information from almost the inception of the titanium industry, in the 1950s, to mid-1992 The information, organized by alloy, makes this exhaustive collection an easy-to-use data base at your fingertips, which generally includes all the product forms for each alloy The 60-plus data sheets supply not only extensive graphical and tabular information on properties, but the datasheets also describe or illustrate important factors which would aid in the selection of the proper alloy or heat treatment The datasheets are further supplemented with back-ground information on the metallurgy and fabrication characteristics of titanium alloys An especially extensive coverage of properties, processing and metallurgy is provided in the datasheet for the workhorse of the titanium industry, Ti-6Al-4V This compendium includes the newest alloys made public even those still under development In many cases, key references are included for further information on a given subject Comprehensive datasheets provide extensive information on: Applications, Specifications, Corrosion, Mechanical Design Properties, Fatigue and Fracture

2,286 citations