scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Additive manufacturing: scientific and technological challenges, market uptake and opportunities

TL;DR: Additive manufacturing (AM) is fundamentally different from traditional formative or subtractive manufacturing in that it is the closest to the bottom-up manufacturing where a structure can be built into its designed shape using a "layer-by-layer" approach rather than casting or forming by technologies such as forging or machining as discussed by the authors.
About: This article is published in Materials Today.The article was published on 2017-07-01 and is currently open access. It has received 1124 citations till now. The article focuses on the topics: Advanced manufacturing & Computer-integrated manufacturing.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present an overview of the types of 3D printing technologies, the application of three-dimensional printing technology and lastly, the materials used for 3-D printing technology in manufacturing industry.

686 citations

Journal ArticleDOI
TL;DR: The Industry 4.0 environment is scanned on this paper, describing the so-called enabling technologies and systems over the manufacturing environment.

586 citations

Journal ArticleDOI
06 Apr 2016
TL;DR: Marshall has unique expertise in leveraging new digital tools, 3D printing, and other advanced manufacturing technologies and applying them to propulsion systems design and other aerospace materials to meet NASA mission and industry needs.
Abstract: Propulsion system development requires new, more affordable manufacturing techniques and technologies in a constrained budget environment, while future in-space applications will require in-space manufacturing and assembly of parts and systems. Marshall is advancing cuttingedge commercial capabilities in additive and digital manufacturing and applying them to aerospace challenges. The Center is developing the standards by which new manufacturing processes and parts will be tested and qualified. Rapidly evolving digital tools, such as additive manufacturing, are the leading edge of a revolution in the design and manufacture of space systems that enables rapid prototyping and reduces production times. Marshall has unique expertise in leveraging new digital tools, 3D printing, and other advanced manufacturing technologies and applying them to propulsion systems design and other aerospace materials to meet NASA mission and industry needs. Marshall is helping establish the standards and qualifications “from art to part” for the use of these advanced techniques and the parts produced using them in aerospace or elsewhere in the U.S. industrial base.

481 citations

Journal ArticleDOI
28 May 2021-Science
TL;DR: In this article, a holistic concept of material-structure-performance integrated additive manufacturing (MSPI-AM) is proposed to cope with the extensive challenges of laser-based additive manufacturing.
Abstract: BACKGROUND Metallic components are the cornerstone of modern industries such as aviation, aerospace, automobile manufacturing, and energy production. The stringent requirements for high-performance metallic components impede the optimization of materials selection and manufacturing. Laser-based additive manufacturing (AM) is a key strategic technology for technological innovation and industrial sustainability. As the number of applications increases, so do the scientific and technological challenges. Because laser AM has domain-by-domain (e.g., point-by-point, line-by-line, and layer-by-layer) localized forming characteristics, the requisite for printing process and performance control encompasses more than six orders of magnitude, from the microstructure (nanometer- to micrometer-scale) to macroscale structure and performance of components (millimeter- to meter-scale). The traditional route of laser-metal AM follows a typical “series mode” from design to build, resulting in a cumbersome trial-and-error methodology that creates challenges for obtaining high-performance goals. ADVANCES We propose a holistic concept of material-structure-performance integrated additive manufacturing (MSPI-AM) to cope with the extensive challenges of AM. We define MSPI-AM as a one-step AM production of an integral metallic component by integrating multimaterial layout and innovative structures, with an aim to proactively achieve the designed high performance and multifunctionality. Driven by the performance or function to be realized, the MSPI-AM methodology enables the design of multiple materials, new structures, and corresponding printing processes in parallel and emphasizes their mutual compatibility, providing a systematic solution to the existing challenges for laser-metal AM. MSPI-AM is defined by two methodological ideas: “the right materials printed in the right positions” and “unique structures printed for unique functions.” The increasingly creative methods for engineering both micro- and macrostructures within single printed components have led to the use of AM to produce more complicated structures with multimaterials. It is now feasible to design and print multimaterial components with spatially varying microstructures and properties (e.g., nanocomposites, in situ composites, and gradient materials), further enabling the integration of functional structures with electronics within the volume of a laser-printed monolithic part. These complicated structures (e.g., integral topology optimization structures, biomimetic structures learned from nature, and multiscale hierarchical lattice or cellular structures) have led to breakthroughs in both mechanical performance and physical/chemical functionality. Proactive realization of high performance and multifunctionality requires cross-scale coordination mechanisms (i.e., from the nano/microscale to the macroscale). OUTLOOK Our MSPI-AM continues to develop into a practical methodology that contributes to the high performance and multifunctionality goals of AM. Many opportunities exist to enhance MSPI-AM. MSPI-AM relies on a more digitized material and structure development and printing, which could be accomplished by considering different paradigms for AM materials discovery with the Materials Genome Initiative, standardization of formats for digitizing materials and structures to accelerate data aggregation, and a systematic printability database to enhance autonomous decision-making of printers. MSPI-oriented AM becomes more intelligent in processes and production, with the integration of intelligent detection, sensing and monitoring, big-data statistics and analytics, machine learning, and digital twins. MSPI-AM further calls for more hybrid approaches to yield the final high-performance/multifunctional achievements, with more versatile materials selection and more comprehensive integration of virtual manufacturing and real production to navigate more complex printing. We hope that MSPI-AM can become a key strategy for the sustainable development of AM technologies. Download high-res image Open in new tab Download Powerpoint Material-structure-performance integrated additive manufacturing (MSPI-AM). Versatile designed materials and innovative structures are simultaneously printed within an integral metallic component to yield high performance and multifunctionality, integrating in parallel the core elements of material, structure, process, and performance and a large number of related coupling elements and future potential elements to enhance the multifunctionality of printed components and the maturity and sustainability of laser AM technologies.

386 citations

Journal ArticleDOI
TL;DR: This review explores open-cellular structural design for porous metal implant applications, in relation to the mechanical properties, biocompatibility, and biodegradability, of metal implants with an enhanced biomorphic environment.

320 citations

References
More filters
Journal ArticleDOI
TL;DR: The state-of-the-art of additive manufacturing (AM) can be classified into three categories: direct digital manufacturing, free-form fabrication, or 3D printing as discussed by the authors.
Abstract: This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

4,055 citations

Book
01 Jan 2009
TL;DR: Gibson et al. as discussed by the authors presented a comprehensive overview of additive manufacturing technologies plus descriptions of support technologies like software systems and post-processing approaches, and provided systematic solutions for process selection and design for AM Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing.
Abstract: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing deals with various aspects of joining materials to form parts. Additive Manufacturing (AM) is an automated technique for direct conversion of 3D CAD data into physical objects using a variety of approaches. Manufacturers have been using these technologies in order to reduce development cycle times and get their products to the market quicker, more cost effectively, and with added value due to the incorporation of customizable features. Realizing the potential of AM applications, a large number of processes have been developed allowing the use of various materials ranging from plastics to metals for product development. Authors Ian Gibson, David W. Rosen and Brent Stucker explain these issues, as well as: Providing a comprehensive overview of AM technologies plus descriptions of support technologies like software systems and post-processing approaches Discussing the wide variety of new and emerging applications like micro-scale AM, medical applications, direct write electronics and Direct Digital Manufacturing of end-use components Introducing systematic solutions for process selection and design for AM Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing is the perfect book for researchers, students, practicing engineers, entrepreneurs, and manufacturing industry professionals interested in additive manufacturing.

3,087 citations

Journal ArticleDOI
TL;DR: Additive manufacturing implies layer by layer shaping and consolidation of powder feedstock to arbitrary configurations, normally using a computer controlled laser as discussed by the authors, which is based on a novel materials incremental manufacturing philosophy.
Abstract: Unlike conventional materials removal methods, additive manufacturing (AM) is based on a novel materials incremental manufacturing philosophy. Additive manufacturing implies layer by layer shaping and consolidation of powder feedstock to arbitrary configurations, normally using a computer controlled laser. The current development focus of AM is to produce complex shaped functional metallic components, including metals, alloys and metal matrix composites (MMCs), to meet demanding requirements from aerospace, defence, automotive and biomedical industries. Laser sintering (LS), laser melting (LM) and laser metal deposition (LMD) are presently regarded as the three most versatile AM processes. Laser based AM processes generally have a complex non-equilibrium physical and chemical metallurgical nature, which is material and process dependent. The influence of material characteristics and processing conditions on metallurgical mechanisms and resultant microstructural and mechanical properties of AM proc...

2,402 citations

Journal ArticleDOI
TL;DR: In this article, a review of additive manufacturing (AM) techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid-state precipitation, mechanical properties and post-processing metallurgy.
Abstract: Additive manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire or sheets in a process that proceeds layer by layer. Many techniques (using many different names) have been developed to accomplish this via melting or solid-state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid-state precipitation, mechanical properties and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Only a few alloys have been developed for commercial production, but recent efforts are presented as a path for the ongoing development of new materials for AM processes.

1,713 citations

Patent
08 Aug 1984
TL;DR: In this article, a system for generating 3D objects by creating a cross-sectional pattern of the object to be formed at a selected surface of a fluid medium capable of altering its physical state in response to appropriate synergistic stimulation by impinging radiation, particle bombardment or chemical reaction is presented.
Abstract: A system for generating three-dimensional objects by creating a cross-sectional pattern of the object to be formed at a selected surface of a fluid medium capable of altering its physical state in response to appropriate synergistic stimulation by impinging radiation, particle bombardment or chemical reaction, successive adjacent laminae, representing corresponding successive adjacent cross-sections of the object, being automatically formed and integrated together to provide a step-wise laminar buildup of the desired object, whereby a three-dimensional object is formed and drawn from a substantially planar surface of the fluid medium during the forming process.

1,569 citations