scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Adenosine signaling during acute and chronic disease states

23 Jan 2013-Journal of Molecular Medicine (Springer-Verlag)-Vol. 91, Iss: 2, pp 173-181
TL;DR: Key observations are discussed that define the beneficial and detrimental aspects of adenosine signaling during acute and chronic disease states with an emphasis on cellular processes, such as inflammatory cell regulation, vascular barrier function, and tissue fibrosis.
Abstract: Adenosine is a signaling nucleoside that is produced following tissue injury, particularly injury involving ischemia and hypoxia. The production of extracellular adenosine and its subsequent signaling through adenosine receptors plays an important role in orchestrating injury responses in multiple organs. There are four adenosine receptors that are widely distributed on immune, epithelial, endothelial, neuronal,and stromal cells throughout the body. Interestingly, these receptors are subject to altered regulation following injury. Studies in mouse models and human cells and tissues have identified that the production of adenosine and its subsequent signaling through its receptors plays largely beneficial roles in acute disease states, with the exception of brain injury. In contrast, if elevated adenosine levels are sustained beyond the acute injury phase, adenosine responses can become detrimental by activating pathways that promote tissue injury and fibrosis. Understanding when during the course of disease adenosine signaling is beneficial as opposed to detrimental and defining the mechanisms involved will be critical for the advancement of adenosine-based therapies for acute and chronic diseases. The purpose of this review is to discuss key observations that define the beneficial and detrimental aspects of adenosine signaling during acute and chronic disease states with an emphasis on cellular processes, such as inflammatory cell regulation, vascular barrier function, and tissue fibrosis.
Citations
More filters
Journal ArticleDOI
TL;DR: After the initial photon absorption events, numerous signaling pathways are activated via reactive oxygen species, cyclic AMP, NO, and Ca2+, leading to activation of transcription factors, which can lead to increased expression of genes related to protein synthesis, cell migration and proliferation,Anti-inflammatory signaling, anti-apoptotic proteins, and antioxidant enzymes.
Abstract: Photobiomodulation also known as low-level laser (or light) therapy (LLLT), has been known for almost 50 years but still has not gained widespread acceptance, largely due to uncertainty about the molecular, cellular, and tissular mechanisms of action. However, in recent years, much knowledge has been gained in this area, which will be summarized in this review. One of the most important chromophores is cytochrome c oxidase (unit IV in the mitochondrial respiratory chain), which contains both heme and copper centers and absorbs light into the near-infrared region. The leading hypothesis is that the photons dissociate inhibitory nitric oxide from the enzyme, leading to an increase in electron transport, mitochondrial membrane potential, and adenosine triphosphate production. Another hypothesis concerns light-sensitive ion channels that can be activated allowing calcium (Ca2+) to enter the cell. After the initial photon absorption events, numerous signaling pathways are activated via reactive oxygen species, cyclic AMP, NO, and Ca2+, leading to activation of transcription factors. These transcription factors can lead to increased expression of genes related to protein synthesis, cell migration and proliferation, anti-inflammatory signaling, anti-apoptotic proteins, and antioxidant enzymes. Stem cells and progenitor cells appear to be particularly susceptible to LLLT.

796 citations

Journal ArticleDOI
TL;DR: The role of adenosine and its receptors in regulating the complex interplay among immune, inflammatory, endothelial and cancer cells during the course of neoplastic disease is critically discussed.
Abstract: Cancer is a complex disease that is dictated by both cancer cell-intrinsic and cell-extrinsic processes. Adenosine is an ancient extracellular signalling molecule that can regulate almost all aspects of tissue function. As such, several studies have recently highlighted a crucial role for adenosine signalling in regulating the various aspects of cell-intrinsic and cell-extrinsic processes of cancer development. This Review critically discusses the role of adenosine and its receptors in regulating the complex interplay among immune, inflammatory, endothelial and cancer cells during the course of neoplastic disease.

619 citations

Journal ArticleDOI
TL;DR: Recessive loss-of-function mutations of ADA2, a growth factor that is the major extracellular adenosine deaminase, can cause polyarteritis nodosa vasculopathy with highly varied clinical expression.
Abstract: BACKGROUND Polyarteritis nodosa is a systemic necrotizing vasculitis with a pathogenesis that is poorly understood. We identified six families with multiple cases of systemic and cutaneous polyarteritis nodosa, consistent with autosomal recessive inheritance. In most cases, onset of the disease occurred during childhood. METHODS We carried out exome sequencing in persons from multiply affected families of Georgian Jewish or German ancestry. We performed targeted sequencing in additional family members and in unrelated affected persons, 3 of Georgian Jewish ancestry and 14 of Turkish ancestry. Mutations were assessed by testing their effect on enzymatic activity in serum specimens from patients, analysis of protein structure, expression in mammalian cells, and bio physical analysis of purified protein. RESULTS In all the families, vasculitis was caused by recessive mutations in CECR1, the gene encoding adenosine deaminase 2 (ADA2). All the Georgian Jewish patients were homozygous for a mutation encoding a Gly47Arg substitution, the German patients were compound heterozygous for Arg169Gln and Pro251Leu mutations, and one Turkish patient was compound heterozygous for Gly47Val and Trp264Ser mutations. In the endogamous Georgian Jewish population, the Gly47Arg carrier frequency was 0.102, which is consistent with the high prevalence of disease. The other mutations either were found in only one family member or patient or were extremely rare. ADA2 activity was significantly reduced in serum specimens from patients. Expression in human embryonic kidney 293T cells revealed low amounts of mutant secreted protein. CONCLUSIONS Recessive loss-of-function mutations of ADA2, a growth factor that is the major extracellular adenosine deaminase, can cause polyarteritis nodosa vasculopathy with highly varied clinical expression. (Funded by the Shaare Zedek Medical Center and others.)

531 citations

Journal ArticleDOI
TL;DR: It is shown for the first time that extracellularAdenosine activates the NLRP3 inflammasome by two ways: by interacting with adenosine receptors at nanomolar/micromolar concentrations and through cellular uptake by equilibrative nucleoside transporters at millimolar concentrations.
Abstract: The NLR pyrin domain containing 3 (NLRP3) inflammasome is a major component of the innate immune system, but its mechanism of activation by a wide range of molecules remains largely unknown. Widely used nano-sized inorganic metal oxides such as silica dioxide (nano-SiO2) and titanium dioxide (nano-TiO2) activate the NLRP3 inflammasome in macrophages similarly to silica or asbestos micro-sized particles. By investigating towards the molecular mechanisms of inflammasome activation in response to nanoparticles, we show here that active adenosine triphosphate (ATP) release and subsequent ATP, adenosine diphosphate (ADP) and adenosine receptor signalling are required for inflammasome activation. Nano-SiO2 or nano-TiO2 caused a significant increase in P2Y1, P2Y2, A2A and/or A2B receptor expression, whereas the P2X7 receptor was downregulated. Interestingly, IL-1β secretion in response to nanoparticles is increased by enhanced ATP and ADP hydrolysis, whereas it is decreased by adenosine degradation or selective A2A or A2B receptor inhibition. Downstream of these receptors, our results show that nanoparticles activate the NLRP3 inflammasome via activation of PLC-InsP3 and/or inhibition of adenylate cyclase (ADCY)-cAMP pathways. Finally, a high dose of adenosine triggers inflammasome activation and IL-1β secretion through adenosine cellular uptake by nucleotide transporters and by its subsequent transformation in ATP by adenosine kinase. In summary, we show for the first time that extracellular adenosine activates the NLRP3 inflammasome by two ways: by interacting with adenosine receptors at nanomolar/micromolar concentrations and through cellular uptake by equilibrative nucleoside transporters at millimolar concentrations. These findings provide new molecular insights on the mechanisms of NLRP3 inflammasome activation and new therapeutic strategies to control inflammation.

161 citations


Cites background from "Adenosine signaling during acute an..."

  • ...Nevertheless, adenosine accumulation can lead to chronic inflammation and diseases.(10) Surprisingly, using millimolar concentrations (1–5mM), we observed that exogenous adenosine alone was able to induce NLRP3 inflammasome activation....

    [...]

Journal ArticleDOI
TL;DR: Adenosine generated by OvCA cells likely contributes to the recruitment of TAMs which further amplify adenosine-dependent immunosuppression via additional ectonucleotidase activity, which could improve immune responses in ovarian cancer.
Abstract: Ovarian cancer (OvCA) tissues show abundant expression of the ectonucleotidases CD39 and CD73 which generate immunomodulatory adenosine, thereby inhibiting cytotoxic lymphocytes. Little, however, is known about the effect of adenosine on myeloid cells. Considering that tumor associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC) constitute up to 20 % of OvCA tissue, we investigated the effect of adenosine on myeloid cells and explored a possible contribution of myeloid cells to adenosine generation in vitro and ex vivo. Monocytes were used as human blood-derived myeloid cells. After co-incubation with SK-OV-3 or OAW-42 OvCA cells, monocyte migration was determined in transwell assays. For conversion into M2-polarized “TAM-like” macrophages, monocytes were co-incubated with OAW-42 cells. Ex vivo TAMs were obtained from OvCA ascites. Macrophage phenotypes were investigated by intracellular staining for IL-10 and IL-12. CD39 and CD73 expression were assessed by FACS analysis both on in vitro-induced TAM-like macrophages and on ascites-derived ex situ-TAMs. Myeloid cells in solid tumor tissue were analyzed by immunohistochemistry. Generation of biologically active adenosine by TAM-like macrophages was measured in luciferase-based reporter assays. Functional effects of adenosine were investigated in proliferation-experiments with CD4+ T cells and specific inhibitors. When CD39 or CD73 activity on OvCA cells were blocked, the migration of monocytes towards OvCA cells was significantly decreased. In vivo, myeloid cells in solid ovarian cancer tissue were found to express CD39 whereas CD73 was mainly detected on stromal fibroblasts. Ex situ-TAMs and in vitro differentiated TAM-like cells, however, upregulated the expression of CD39 and CD73 compared to monocytes or M1 macrophages. Expression of ectonucleotidases also translated into increased levels of biologically active adenosine. Accordingly, co-incubation with these TAMs suppressed CD4+ T cell proliferation which could be rescued via blockade of CD39 or CD73. Adenosine generated by OvCA cells likely contributes to the recruitment of TAMs which further amplify adenosine-dependent immunosuppression via additional ectonucleotidase activity. In solid ovarian cancer tissue, TAMs express CD39 while CD73 is found on stromal fibroblasts. Accordingly, small molecule inhibitors of CD39 or CD73 could improve immune responses in ovarian cancer.

103 citations


Cites background from "Adenosine signaling during acute an..."

  • ...Sustained high levels of adenosine can, however, turn harmful by triggering immune suppression or by activating unremitting wound-healing [17, 18]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: It is concluded that CD39 and CD73 are surface markers of T reg cells that impart a specific biochemical signature characterized by adenosine generation that has functional relevance for cellular immunoregulation.
Abstract: The study of T regulatory cells (T reg cells) has been limited by the lack of specific surface markers and an inability to define mechanisms of suppression. We show that the expression of CD39/ENTPD1 in concert with CD73/ecto-5'-nucleotidase distinguishes CD4(+)/CD25(+)/Foxp3(+) T reg cells from other T cells. These ectoenzymes generate pericellular adenosine from extracellular nucleotides. The coordinated expression of CD39/CD73 on T reg cells and the adenosine A2A receptor on activated T effector cells generates immunosuppressive loops, indicating roles in the inhibitory function of T reg cells. Consequently, T reg cells from Cd39-null mice show impaired suppressive properties in vitro and fail to block allograft rejection in vivo. We conclude that CD39 and CD73 are surface markers of T reg cells that impart a specific biochemical signature characterized by adenosine generation that has functional relevance for cellular immunoregulation.

2,133 citations


"Adenosine signaling during acute an..." refers background in this paper

  • ...Anti-inflammatory properties of this receptor have been demonstrated in T cells [44], NK T cells [45, 46], invariant NK T cells [46], macrophages [47], neutrophils [48], dendritic cells [49], and T regulatory cells [50] where ADOR2A signaling is associated with inhibition of proliferation, inflammatory cytokine production and increased production of anti-inflammatory cytokines....

    [...]

Journal ArticleDOI
TL;DR: This review deals with emerging evidence of an association between systemic or local hypoxia and inflammation in a variety of diseases and points to new ways of treating inflammatory disorders or conditions such as certain cancers with intralesional Hypoxia.
Abstract: This review deals with emerging evidence of an association between systemic or local hypoxia and inflammation in a variety of diseases. The evidence points to new ways of treating inflammatory disorders or conditions such as certain cancers with intralesional hypoxia.

1,603 citations


"Adenosine signaling during acute an..." refers background in this paper

  • ...In acute injury settings, this hypoxic adenosine response activates pathways that promote tissue adaptation during hypoxia [1]....

    [...]

  • ...sis involve severe levels of hypoxia [1]....

    [...]

Journal ArticleDOI
TL;DR: Recent advances in the understanding of the roles of the various adenosine receptor subtypes, and in the development of selective and potent ligands, have brought the goal of therapeutic application of adenosines receptor modulators considerably closer.
Abstract: Adenosine receptors are major targets of caffeine, the most commonly consumed drug in the world There is growing evidence that they could also be promising therapeutic targets in a wide range of conditions, including cerebral and cardiac ischaemic diseases, sleep disorders, immune and inflammatory disorders and cancer After more than three decades of medicinal chemistry research, a considerable number of selective agonists and antagonists of adenosine receptors have been discovered, and some have been clinically evaluated, although none has yet received regulatory approval However, recent advances in the understanding of the roles of the various adenosine receptor subtypes, and in the development of selective and potent ligands, as discussed in this review, have brought the goal of therapeutic application of adenosine receptor modulators considerably closer

1,303 citations


"Adenosine signaling during acute an..." refers background in this paper

  • ...Please see the following reviews for more information on the functions of these receptors in acute and chronic disease processes [25, 42, 43]....

    [...]

Journal ArticleDOI
20 Dec 2001-Nature
TL;DR: It is suggested that A2a adenosine receptors are a critical part of the physiological negative feedback mechanism for limitation and termination of both tissue-specific and systemic inflammatory responses.
Abstract: Inappropriate or prolonged inflammation is the main cause of many diseases; for this reason it is important to understand the physiological mechanisms that terminate inflammation in vivo. Agonists for several Gs-protein-coupled receptors, including cell-surface adenosine purinergic receptors, can increase levels of immunosuppressive cyclic AMP in immune cells; however, it was unknown whether any of these receptors regulates inflammation in vivo. Here we show that A2a adenosine receptors have a non-redundant role in the attenuation of inflammation and tissue damage in vivo. Sub-threshold doses of an inflammatory stimulus that caused minimal tissue damage in wild-type mice were sufficient to induce extensive tissue damage, more prolonged and higher levels of pro-inflammatory cytokines, and death of male animals deficient in the A2a adenosine receptor. Similar observations were made in studies of three different models of inflammation and liver damage as well as during bacterial endotoxin-induced septic shock. We suggest that A2a adenosine receptors are a critical part of the physiological negative feedback mechanism for limitation and termination of both tissue-specific and systemic inflammatory responses.

1,198 citations

Journal ArticleDOI
TL;DR: In the 10 years since the previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors, no developments have led to major changes in the recommendations, but there have been so many other developments that an update is needed.
Abstract: In the 10 years since our previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors, no developments have led to major changes in the recommendations. However, there have been so many other developments that an update is needed. The fact that the structure of one of the adenosine receptors has recently been solved has already led to new ways of in silico screening of ligands. The evidence that adenosine receptors can form homo- and heteromultimers has accumulated, but the functional significance of such complexes remains unclear. The availability of mice with genetic modification of all the adenosine receptors has led to a clarification of the functional roles of adenosine, and to excellent means to study the specificity of drugs. There are also interesting associations between disease and structural variants in one or more of the adenosine receptors. Several new selective agonists and antagonists have become available. They provide improved possibilities for receptor classification. There are also developments hinting at the usefulness of allosteric modulators. Many drugs targeting adenosine receptors are in clinical trials, but the established therapeutic use is still very limited.

1,145 citations


"Adenosine signaling during acute an..." refers background in this paper

  • ...This receptor is coupled to G-stimulatory alpha subunits to increase cAMP levels in the cell [34]....

    [...]

  • ...Increases in extracellular adenosine in turn elicit various responses on target cells by engaging cell surface adenosine receptors [33, 34]....

    [...]