scispace - formally typeset
Search or ask a question
Book

Adsorption by Powders and Porous Solids: Principles, Methodology and Applications

TL;DR: In this paper, the authors provide an introductory review of the various theoretical and practical aspects of adsorption by powders and porous solids with particular reference to materials of technological importance.
Abstract: The declared objective of this book is to provide an introductory review of the various theoretical and practical aspects of adsorption by powders and porous solids with particular reference to materials of technological importance. The primary aim is to meet the needs of students and non-specialists, who are new to surface science or who wish to use the advanced techniques now available for the determination of surface area, pore size and surface characterization. In addition, a critical account is given of recent work on the adsorptive properties of activated carbons, oxides, clays and zeolites. Key Features * Provides a comprehensive treatment of adsorption at both the gas/solid interface and the liquid/solid interface * Includes chapters dealing with experimental methodology and the interpretation of adsorption data obtained with porous oxides, carbons and zeolites * Techniques capture the importance of heterogeneous catalysis, chemical engineering and the production of pigments, cements, agrochemicals, and pharmaceuticals
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the presentation, nomenclature, and methodology associated with the application of physisorption for surface area assessment and pore size analysis.
Abstract: Gas adsorption is an important tool for the characterisation of porous solids and fine powders. Major advances in recent years have made it necessary to update the 1985 IUPAC manual on Reporting Physisorption Data for Gas/Solid Systems. The aims of the present document are to clarify and standardise the presentation, nomenclature and methodology associated with the application of physisorption for surface area assessment and pore size analysis and to draw attention to remaining problems in the interpretation of physisorption data.

11,019 citations


Cites background or methods from "Adsorption by Powders and Porous So..."

  • ...Inverse gas chromatography, which involves an elution phenomenon and the determination of a retention time, is mainly applied for studies in the low monolayer coverage (or micropore filling) region, although it has been used, apparently satisfactorily, up to monolayer coverage [2]....

    [...]

  • ...This assumption is known as the Gurvich rule [2, 4]....

    [...]

  • ...In the simplest case, when the GDS exactly coincides with the actual adsorbing surface [2], the amount adsorbed na is given by...

    [...]

  • ...At 87 K, this problem is avoided since argon fills narrow micropores at significantly higher relative pressures in comparison with nitrogen at 77 K [2, 4, 6]....

    [...]

  • ...With sensitive samples, a sample-controlled heating programme is recommended, which also reduces the risk of fine powder elutriation if the adsorbent is outgassed under high vacuum [2]....

    [...]

Journal ArticleDOI
TL;DR: This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorbents in rigid and flexible MOFs, and primary relationships between adsorptive properties and framework features are analyzed.
Abstract: Adsorptive separation is very important in industry. Generally, the process uses porous solid materials such as zeolites, activated carbons, or silica gels as adsorbents. With an ever increasing need for a more efficient, energy-saving, and environmentally benign procedure for gas separation, adsorbents with tailored structures and tunable surface properties must be found. Metal–organic frameworks (MOFs), constructed by metal-containing nodes connected by organic bridges, are such a new type of porous materials. They are promising candidates as adsorbents for gas separations due to their large surface areas, adjustable pore sizes and controllable properties, as well as acceptable thermal stability. This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorption in rigid and flexible MOFs. Based on possible mechanisms, selective adsorptions observed in MOFs are classified, and primary relationships between adsorption properties and framework features are analyzed. As a specific example of tailor-made MOFs, mesh-adjustable molecular sieves are emphasized and the underlying working mechanism elucidated. In addition to the experimental aspect, theoretical investigations from adsorption equilibrium to diffusion dynamics via molecular simulations are also briefly reviewed. Furthermore, gas separations in MOFs, including the molecular sieving effect, kinetic separation, the quantum sieving effect for H2/D2 separation, and MOF-based membranes are also summarized (227 references).

7,186 citations

Journal ArticleDOI
18 Nov 2005-Science
TL;DR: Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid and hexahydroxytriphenylene to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms.
Abstract: Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid {C6H4[B(OH)2]2} and hexahydroxytriphenylene [C18H6(OH)6]. Powder x-ray diffraction studies of the highly crystalline products (C3H2BO)6.(C9H12)1 (COF-1) and C9H4BO2 (COF-5) revealed expanded porous graphitic layers that are either staggered (COF-1, P6(3)/mmc) or eclipsed (COF-5, P6/mmm). Their crystal structures are entirely held by strong bonds between B, C, and O atoms to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms. COF-1 and COF-5 exhibit high thermal stability (to temperatures up to 500 degrees to 600 degrees C), permanent porosity, and high surface areas (711 and 1590 square meters per gram, respectively).

4,843 citations


Cites background from "Adsorption by Powders and Porous So..."

  • ...At higher pressures, a slow rise in the isotherm occurs because of the existence of a small population of external mesopores between the crystallites; this feature is not uncommon for particles with platelet morphologies (19)....

    [...]

  • ...These values surpass those of other layered materials, including graphite (10 m(2) g), clays (10 to 100 m(2) g), and pillared clays (50 to 300 m(2) g) and are in the range of the most porous zeolites and many porous carbons (19)....

    [...]

  • ...The total surface area was calculated to be 711 m(2) g, with a micropore contribution of 587 m(2) g (83%) and mesopore contribution of 124 m(2) g (17%) from de Boer statistical thickness (t-plot) analysis (19)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the pore size distributions derived from adsorption isotherms of micro- and mesoporous materials are identified and discussed based on new results and examples reported in the recent literature.

1,775 citations

Journal ArticleDOI
TL;DR: A bottom-up synthesis strategy for dispersible copper 1,4-benzenedicarboxylate MOF lamellae of micrometer lateral dimensions and nanometer thickness is presented and opens the door to ultrathin MOF-polymer composites for various applications.
Abstract: The research leading to these results has received funding (J.G., B.S.) from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 335746, CrystEng-MOF-MMM. T.R. is grateful to TUDelft for funding. G.P. acknowledges the A. von Humboldt Foundation for a research grant. A.C., I.L. and F.X.L.i.X. thank Consolider-Ingenio 2010 (project MULTICAT) and the ‘Severo Ochoa’ programme for support. I.L. also thanks CSIC for a JAE doctoral grant.

1,649 citations


Cites background from "Adsorption by Powders and Porous So..."

  • ...The isotherms show a type I shape, characteristic of microporous materials[39], with CO2 uptakes at 1 bar (750 torr) of 1....

    [...]