scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Adsorption-Enhanced Hydrolysis of β-1,4-Glucan on Graphene-Based Amorphous Carbon Bearing SO3H, COOH, and OH Groups

TL;DR: Results suggest that the synergetic combination of high densities of the functional groups bonded to amorphous carbon causes the efficient hydrolysis of beta-1,4-glucan, including cellulose, on the carbon material.
Abstract: The reaction mechanism of the hydrolysis of cellulose by a carbon-based solid acid, amorphous carbon containing graphene sheets bearing SO(3)H, COOH, and phenolic OH groups, has been investigated in detail through the hydrolysis of water-soluble beta-1,4-glucan. Whereas a range of solid strong Bronsted acid catalysts (inorganic oxides with acidic OH groups, SO(3)H-bearing resins, and the carbon-based solid acid) can hydrolyze the beta-1,4-glycosidic bonds in cellobiose (the shortest water-soluble beta-1,4-glucan), the tested solid acids except for the carbon material, consisting of conventional solid acids, cannot function as effective catalysts for the hydrolysis of cellohexaose (a long-chain water-soluble beta-1,4-glucan). However, the carbon material exhibits remarkable catalytic performance for the hydrolysis of cellohexaose: the turnover frequency (TOF) of SO(3)H groups in the carbon material exceeds ca. 20 times those of the conventional solid acids, reaching that of sulfuric acid, which is the most active catalyst. Experimental results revealed that inorganic oxides with acidic OH groups are not acidic enough to decompose the hydrogen and beta-1,4-glycosidic bonds in cellohexaose molecules aggregated by strong hydrogen bonds as well as cellulose and that the SO(3)H groups of the resins that do not adsorb beta-1,4-glucan are unable to attack the hydrogen and beta-1,4-glycosidic bonds in cellohexaose molecules effectively. In contrast, the carbon material is capable of adsorbing beta-1,4-glucan by phenolic OH or COOH groups in the carbon material, and SO(3)H groups bonded to the carbon therefore function as effective active sites for both decomposing the hydrogen bonds and hydrolyzing the beta-1,4-glycosidic bonds in the adsorbed long-chain water-soluble beta-1,4-glucan aggregate. These results suggest that the synergetic combination of high densities of the functional groups bonded to amorphous carbon causes the efficient hydrolysis of beta-1,4-glucan, including cellulose, on the carbon material.
Citations
More filters
Journal ArticleDOI
TL;DR: The various hemicelluloses structures present in lignocellulose, the range of pre-treatment and hydrolysis options including the enzymatic ones, and the role of different microbial strains on process integration aiming to reach a meaningful consolidated bioprocessing are reviewed.

1,355 citations


Cites background from "Adsorption-Enhanced Hydrolysis of β..."

  • ...In the case of the amorphous carbon bearing SO3H, COOH and OH, this better catalytic performance is attributed to the ability of this material to adsorb b-1,4 glucan, which does not adsorb to other solid acids (Kitano et al., 2009)....

    [...]

Journal ArticleDOI
TL;DR: Past and present developments in hydrogenolysis reactions are highlighted, with special emphasis on the direct utilization of cellulosic feedstocks, to bridge currently available technologies and future biomass-based refinery concepts.
Abstract: In view of the diminishing oil resources and the ongoing climate change, the use of efficient and environmentally benign technologies for the utilization of renewable resources has become indispensible. Therein, hydrogenolysis reactions offer a promising possibility for future biorefinery concepts. These reactions result in the cleavage of C-C and C-O bonds by hydrogen and allow direct access to valuable platform chemicals already integrated in today's value chains. Thus, hydrogenolysis bears the potential to bridge currently available technologies and future biomass-based refinery concepts. This Review highlights past and present developments in this field, with special emphasis on the direct utilization of cellulosic feedstocks.

735 citations

Journal ArticleDOI
TL;DR: This Review focuses on aspects related to the hydrolysis of cellulose as this process is a significant entry point into the biorefinery scheme based on carbohydrates for the production of biofuels and biochemicals.
Abstract: Cellulose is a major source of glucose because it is readily available, renewable, and does not compete with the food supply. Hydrolysis of cellulose is experiencing a new research and development cycle in which this reaction is carried out over solid catalysts and coupled to other reactions for increased efficiency. Cellulose is typically not soluble in conventional solvents and very resistant to chemical and biological transformations. This Review focuses on aspects related to the hydrolysis of cellulose as this process is a significant entry point into the biorefinery scheme based on carbohydrates for the production of biofuels and biochemicals. Structural features of cellulose, conventional acid-catalyzed reactions, and the use of solid acid catalysts for hydrolysis are discussed. The longterm success of the biorefinery concept depends on the development of energetically efficient processes to convert cellulose directly or indirectly into biofuels and chemicals.

598 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes recent advances in the hydrolysis of cellulose by different types of solid acids, such as sulfonated carbonaceous based acids, polymer based acids and magnetic solid acids.

565 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a model and theoretical understanding of the Raman spectra in disordered and amorphous carbon is given, and the nature of the G and D vibration modes in graphite is analyzed in terms of the resonant excitation of \ensuremath{\pi} states and the long-range polarizability of the long range bonding.
Abstract: The model and theoretical understanding of the Raman spectra in disordered and amorphous carbon are given. The nature of the G and D vibration modes in graphite is analyzed in terms of the resonant excitation of \ensuremath{\pi} states and the long-range polarizability of \ensuremath{\pi} bonding. Visible Raman data on disordered, amorphous, and diamondlike carbon are classified in a three-stage model to show the factors that control the position, intensity, and widths of the G and D peaks. It is shown that the visible Raman spectra depend formally on the configuration of the ${\mathrm{sp}}^{2}$ sites in ${\mathrm{sp}}^{2}$-bonded clusters. In cases where the ${\mathrm{sp}}^{2}$ clustering is controlled by the ${\mathrm{sp}}^{3}$ fraction, such as in as-deposited tetrahedral amorphous carbon (ta-C) or hydrogenated amorphous carbon (a-C:H) films, the visible Raman parameters can be used to derive the ${\mathrm{sp}}^{3}$ fraction.

12,593 citations

Journal ArticleDOI
TL;DR: The current knowledge in the structure and chemistry of cellulose, and in the development of innovative cellulose esters and ethers for coatings, films, membranes, building materials, drilling techniques, pharmaceuticals, and foodstuffs are assembled.
Abstract: As the most important skeletal component in plants, the polysaccharide cellulose is an almost inexhaustible polymeric raw material with fascinating structure and properties. Formed by the repeated connection of D-glucose building blocks, the highly functionalized, linear stiff-chain homopolymer is characterized by its hydrophilicity, chirality, biodegradability, broad chemical modifying capacity, and its formation of versatile semicrystalline fiber morphologies. In view of the considerable increase in interdisciplinary cellulose research and product development over the past decade worldwide, this paper assembles the current knowledge in the structure and chemistry of cellulose, and in the development of innovative cellulose esters and ethers for coatings, films, membranes, building materials, drilling techniques, pharmaceuticals, and foodstuffs. New frontiers, including environmentally friendly cellulose fiber technologies, bacterial cellulose biomaterials, and in-vitro syntheses of cellulose are highlighted together with future aims, strategies, and perspectives of cellulose research and its applications.

6,098 citations

Journal ArticleDOI
27 Jan 2006-Science
TL;DR: The integration of agroenergy crops and biorefinery manufacturing technologies offers the potential for the development of sustainable biopower and biomaterials that will lead to a new manufacturing paradigm.
Abstract: Biomass represents an abundant carbon-neutral renewable resource for the production of bioenergy and biomaterials, and its enhanced use would address several societal needs. Advances in genetics, biotechnology, process chemistry, and engineering are leading to a new manufacturing concept for converting renewable biomass to valuable fuels and products, generally referred to as the biorefinery. The integration of agroenergy crops and biorefinery manufacturing technologies offers the potential for the development of sustainable biopower and biomaterials that will lead to a new manufacturing paradigm.

5,344 citations

Journal ArticleDOI
TL;DR: Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481 4.2.1.
Abstract: 3.2.3. Hydroformylation 2467 3.2.4. Dimerization 2468 3.2.5. Oxidative Cleavage and Ozonolysis 2469 3.2.6. Metathesis 2470 4. Terpenes 2472 4.1. Pinene 2472 4.1.1. Isomerization: R-Pinene 2472 4.1.2. Epoxidation of R-Pinene 2475 4.1.3. Isomerization of R-Pinene Oxide 2477 4.1.4. Hydration of R-Pinene: R-Terpineol 2478 4.1.5. Dehydroisomerization 2479 4.2. Limonene 2480 4.2.1. Isomerization 2480 4.2.2. Epoxidation: Limonene Oxide 2480 4.2.3. Isomerization of Limonene Oxide 2481 4.2.4. Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481

5,127 citations

Journal ArticleDOI
TL;DR: An overview of chemical catalytic transformations of biomass-derived oxygenated feedstocks in the liquid phase to value-added chemicals and fuels is presented, with specific examples emphasizing the development of catalytic processes based on an understanding of the fundamental reaction chemistry.
Abstract: Biomass has the potential to serve as a sustainable source of energy and organic carbon for our industrialized society. The focus of this Review is to present an overview of chemical catalytic transformations of biomass-derived oxygenated feedstocks (primarily sugars and sugar-alcohols) in the liquid phase to value-added chemicals and fuels, with specific examples emphasizing the development of catalytic processes based on an understanding of the fundamental reaction chemistry. The key reactions involved in the processing of biomass are hydrolysis, dehydration, isomerization, aldol condensation, reforming, hydrogenation, and oxidation. Further, it is discussed how ideas based on fundamental chemical and catalytic concepts lead to strategies for the control of reaction pathways and process conditions to produce H(2)/CO(2) or H(2)/CO gas mixtures by aqueous-phase reforming, to produce furan compounds by selective dehydration of carbohydrates, and to produce liquid alkanes by the combination of aldol condensation and dehydration/hydrogenation processes.

2,063 citations