scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Adult Stem Cells in Tissue Maintenance and Regeneration.

02 Feb 2016-Stem Cells International (Hindawi Publishing Corporation)-Vol. 2016, pp 7362879-7362879
TL;DR: Perhaps, tissue-specific biological cues that determine the fate of adult stem cells and their committed progenitors in normal and pathological conditions pose limits to cell differentiation and survival in vivo.
Abstract: Adult stem cells, also known as somatic stem cells, reside in specific tissues and possess fundamental properties of stem cells, that is, self-renewal capacity and, though limited in magnitude, multipotency. Generally, these primitive cells are stored in a specialized environment called niche, where they are connected to supporting cells, protected from external harmful stimuli, and kept quiescent until the arrival of an appropriate activating signal. In accordance with the demand of the organ, tissue-specific adult stem cells proliferate, migrate to leave the niche, and differentiate to replace senescent or deteriorated cells, maintaining the organ structure and function. Also, they are known to repair mild injuries in various organs including the skin, liver, intestine, kidney, and bone marrow. Such endogenous regenerative mechanisms, however, appear insufficient to cope with severe damage, as in the case of myocardial infarction [1, 2] or cerebral ischemia [3], in which the damage is mostly irreversible despite the presence of local stem cells. Possibly, tissue-specific biological cues that determine the fate of adult stem cells and their committed progenitors in normal and pathological conditions pose limits to cell differentiation and survival in vivo.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: NTAPP activated the proliferation of various mesodermal-derived human adult stem cells by accelerating the G1-S transition while maintaining their pluripotency and stemness, strongly suggesting that NTAPP can be an efficient tool for expanding the population of variousadult stem cells in vitro for medical applications.

37 citations

Journal ArticleDOI
TL;DR: This review will summarize the progress in the field of phage-based tissue regeneration and the future directions in this field.

37 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the main characteristics of stem cell niches in these different tissues, highlighting the various components influencing stem cell activity, including stem cell-intrinsic factors, supporting cells, extracellular matrix, and signaling pathways.
Abstract: Adult stem cells are fundamental to maintain tissue homeostasis, growth, and regeneration. They reside in specialized environments called niches. Following activating signals, they proliferate and differentiate into functional cells that are able to preserve tissue physiology, either to guarantee normal turnover or to counteract tissue damage caused by injury or disease. Multiple interactions occur within the niche between stem cell-intrinsic factors, supporting cells, the extracellular matrix, and signaling pathways. Altogether, these interactions govern cell fate, preserving the stem cell pool, and regulating stem cell proliferation and differentiation. Based on their response to body needs, tissues can be largely classified into three main categories: tissues that even in normal conditions are characterized by an impressive turnover to replace rapidly exhausting cells (blood, epidermis, or intestinal epithelium); tissues that normally require only a basal cell replacement, though able to efficiently respond to increased tissue needs, injury, or disease (skeletal muscle); tissues that are equipped with less powerful stem cell niches, whose repairing ability is not able to overcome severe damage (heart or nervous tissue). The purpose of this review is to describe the main characteristics of stem cell niches in these different tissues, highlighting the various components influencing stem cell activity. Although much has been done, more work is needed to further increase our knowledge of niche interactions. This would be important not only to shed light on this fundamental chapter of human physiology but also to help the development of cell-based strategies for clinical therapeutic applications, especially when other approaches fail.

29 citations

Journal ArticleDOI
TL;DR: Using metabolic flux analysis, this study identifies Barx1 as a DPSCs marker and dissects the first predictive metabolic signature for DPSCs aging, indicating a loss of stem cell characteristics and spontaneous initiation of terminal differentiation.
Abstract: Tissue resident adult stem cells are known to participate in tissue regeneration and repair that follows cell turnover, or injury. It has been well established that aging impedes the regeneration capabilities at the cellular level, but it is not clear if the different onset of stem cell aging between individuals can be predicted or prevented at an earlier stage. Here we studied the dental pulp stem cells (DPSCs), a population of adult stem cells that is known to participate in the repair of an injured tooth, and its properties can be affected by aging. The dental pulp from third molars of a diverse patient group were surgically extracted, generating cells that had a high percentage of mesenchymal stem cell markers CD29, CD44, CD146 and Stro1 and had the ability to differentiate into osteo/odontogenic and adipogenic lineages. Through RNA seq and qPCR analysis we identified homeobox protein, Barx1, as a marker for DPSCs. Furthermore, using high throughput transcriptomic and proteomic analysis we identified markers for DPSC populations with accelerated replicative senescence. In particular, we show that the transforming growth factor-beta (TGF-β) pathway and the cytoskeletal proteins are upregulated in rapid aging DPSCs, indicating a loss of stem cell characteristics and spontaneous initiation of terminal differentiation. Importantly, using metabolic flux analysis, we identified a metabolic signature for the rapid aging DPSCs, prior to manifestation of senescence phenotypes. This metabolic signature therefore can be used to predict the onset of replicative senescence. Hence, the present study identifies Barx1 as a DPSCs marker and dissects the first predictive metabolic signature for DPSCs aging.

25 citations

Book ChapterDOI
05 Nov 2018
TL;DR: Questions considering donor material variability, manufacturing, cell culture medium and auxiliary components selection, and potency tests development are highlighted, before the clinical application of this promising biopharmaceutical.
Abstract: Regenerative medicine is a fast growing multidisciplinary field aiming at the regeneration or replacement of damaged cells, tissues, or organs. Adult multipotent mesenchymal stromal cells (MSCs) are often used as a principal therapeutic tool in this field. Along with differentiation potency, MSCs secrete a wide spectrum of paracrine factors and extracellular vesicles participating in tissue repair and regeneration. Thus, for injuries that require trophic stimulation, cell survival support, and/or resident stem cells activation to be restored, one can apply MSC-conditioned medium, a combination of products and extracellular vesicles in cell culture growth medium, secreted by MSC. It could mediate most of beneficial regenerative effects of MSC without possible side effects of using MSC themselves. However, before the clinical application of this promising biopharmaceutical, several issues such as manufacturing protocols, quality control, and others must be addressed. Subsequently, we highlight the questions considering donor material variability, manufacturing, cell culture medium and auxiliary components selection, and potency tests development.

18 citations


Cites background from "Adult Stem Cells in Tissue Maintena..."

  • ...However, stem cells could not cope with more serious injuries without more substantial support [9]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: It is indicated that CPCs fail to reach terminal differentiation and functional competence in pathological conditions because of adverse effects of underlying pathology, which disrupts cardiac tissue structure and composition, and cellular senescence, resulting from cardiac stem cell activation in telomere dysfunctional environment.
Abstract: Adult human heart hosts a population of cardiac primitive CD117-positive cells (CPCs), which are responsible for physiological tissue homeostasis and regeneration. While the bona fide stem cells express telomerase, their progenies are no longer able to preserve telomeric DNA; hence the balance between their proliferation and differentiation has to be tightly controlled in order to prevent cellular senescence and apoptosis of CPCs before their maturation can be accomplished. We have examined at cellular and molecular level the proliferation, apoptosis and commitment of CPCs isolated from normal (CPC-N) and age-matched pathological adult human hearts (CPC-P) with ischemic heart disease. In the CPC-P, genes related to early stages of developmental processes, nervous system development and neurogenesis, skeletal development, bone and cartilage development were downregulated, while those involved in mesenchymal cell differentiation and heart development were upregulated, together with the transcriptional activation of TGFβ/BMP signaling pathway. In the pathological heart, asymmetric division was the prevalent type of cardiac stem cell division. The population of CPC-P consisted mainly of progenitors of cardiac cell lineages and less precursors; these cells proliferated more, but were also more susceptible to apoptosis with respect to CPC-N. These results indicate that CPCs fail to reach terminal differentiation and functional competence in pathological conditions. Adverse effects of underlying pathology, which disrupts cardiac tissue structure and composition, and cellular senescence, resulting from cardiac stem cell activation in telomere dysfunctional environment, can be responsible for such outcome.

24 citations


"Adult Stem Cells in Tissue Maintena..." refers background in this paper

  • ...Such endogenous regenerative mechanisms, however, appear insufficient to cope with severe damage, as in the case of myocardial infarction [1, 2] or cerebral ischemia [3], in which the damage is mostly irreversible despite the presence of local stem cells....

    [...]

Journal ArticleDOI
TL;DR: The controversy as to whether the adult heart possesses an intrinsic growth reserve is addressed, and several theories have been proposed and are presented in this review article.

21 citations


"Adult Stem Cells in Tissue Maintena..." refers background in this paper

  • ...Such endogenous regenerative mechanisms, however, appear insufficient to cope with severe damage, as in the case of myocardial infarction [1, 2] or cerebral ischemia [3], in which the damage is mostly irreversible despite the presence of local stem cells....

    [...]

Journal ArticleDOI
TL;DR: This review summarizes and discusses the current imaging modalities suitable to monitor eNSCs in individual experimental animals over time, including optical imaging, magnetic resonance tomography and-spectroscopy, as well as positron emission tomography (PET).
Abstract: The discovery of endogenous neural stem cells (eNSCs) in the adult mammalian brain with their ability to self-renew and differentiate into functional neurons, astrocytes and oligodendrocytes has raised the hope for novel therapies of neurological diseases. Experimentally, those eNSCs can be mobilized in vivo, enhancing regeneration and accelerating functional recovery after, e.g., focal cerebral ischemia, thus constituting a most promising approach in stem cell research. In order to translate those current experimental approaches into a clinical setting in the future, non-invasive imaging methods are required to monitor eNSC activation in a longitudinal and intra-individual manner. As yet, imaging protocols to assess eNSC mobilization non-invasively in the live brain remain scarce, but considerable progress has been made in this field in recent years. This review summarizes and discusses the current imaging modalities suitable to monitor eNSCs in individual experimental animals over time, including optical imaging, magnetic resonance tomography and-spectroscopy, as well as positron emission tomography (PET). Special emphasis is put on the potential of each imaging method for a possible clinical translation, and on the specificity of the signal obtained. PET-imaging with the radiotracer 3'-deoxy-3'-[(18)F]fluoro-L-thymidine in particular constitutes a modality with excellent potential for clinical translation but low specificity; however, concomitant imaging of neuroinflammation is feasible and increases its specificity. The non-invasive imaging strategies presented here allow for the exploitation of novel treatment strategies based upon the regenerative potential of eNSCs, and will help to facilitate a translation into the clinical setting.

17 citations

Trending Questions (1)
What is the source of adult human stem cell?

Possibly, tissue-specific biological cues that determine the fate of adult stem cells and their committed progenitors in normal and pathological conditions pose limits to cell differentiation and survival in vivo.