scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Advanced Sound Classifiers and Performance Analyses for Accurate Audio-Based Construction Project Monitoring

01 Sep 2020-Journal of Computing in Civil Engineering (American Society of Civil Engineers)-Vol. 34, Iss: 5, pp 04020030
TL;DR: The sounds of work activities and equipment operations at a construction site provide critical information regarding construction progress, task performance, and safety issues.
Abstract: The sounds of work activities and equipment operations at a construction site provide critical information regarding construction progress, task performance, and safety issues The construc
Citations
More filters
Journal ArticleDOI
27 Nov 2020
TL;DR: DTC should be viewed as a comprehensive mode of construction that prioritizes closing the control loops rather than an extension of BIM tools integrated with sensing and monitoring technologies.
Abstract: The concept of a “digital twin” as a model for data-driven management and control of physical systems has emerged over the past decade in the domains of manufacturing, production, and operations. In the context of buildings and civil infrastructure, the notion of a digital twin remains ill-defined, with little or no consensus among researchers and practitioners of the ways in which digital twin processes and data-centric technologies can support design and construction. This paper builds on existing concepts of Building Information Modeling (BIM), lean project production systems, automated data acquisition from construction sites and supply chains, and artificial intelligence to formulate a mode of construction that applies digital twin information systems to achieve closed loop control systems. It contributes a set of four core information and control concepts for digital twin construction (DTC), which define the dimensions of the conceptual space for the information used in DTC workflows. Working from the core concepts, we propose a DTC information system workflow—including information stores, information processing functions, and monitoring technologies—according to three concentric control workflow cycles. DTC should be viewed as a comprehensive mode of construction that prioritizes closing the control loops rather than an extension of BIM tools integrated with sensing and monitoring technologies.

162 citations

Journal ArticleDOI
TL;DR: This research proposes a novel machine learning method based on the integration of Random Forest classifier with the fractional calculus-based feature augmentation technique to develop an accurate activity recognition model using a limited dataset.

32 citations

Journal ArticleDOI
TL;DR: A Machine Learning methodology was developed to train and evaluate 13 classifiers using artificial features extracted from raw accelerometer data segments, indicating that accelerometers can be used to create a robust system to recognise large sets of Construction worker activities automatically.
Abstract: Automated Construction worker activity classification has the potential to not only benefit the worker performance in terms of productivity and safety, but also the overall project management and control. The activity-level knowledge and indicators that can be extracted from this process may support project decision making, aiding in project schedule adjustment, resource management, construction site control, among others. Previous works on this topic focused on the collection and classification of worker acceleration data using wearable accelerometers and supervised machine learning algorithms, respectively. However, most of these studies tend to consider small sets of activities performed in an instructed manner, which can lead to higher accuracy results than those expected in a real construction scenario. To this end, this paper builds on the results of these past studies, committing to expand this discussion by covering a larger set of complex Construction activities than the current state-of-the-art, while avoiding the need to instruct test subjects on how and when to perform each activity. As such, a Machine Learning methodology was developed to train and evaluate 13 classifiers using artificial features extracted from raw accelerometer data segments. An experimental study was carried out under the form of a realistic activity-circuit to recognise ten different activities: gearing up; hammering; masonry; painting; roughcasting; sawing; screwing; sitting; standing still; and walking; with most activities being a cluster of simpler tasks (i.e. masonry includes fetching, transporting, and laying bricks). Activities were initially separated and tested in three different activity groups, before assessing all activities together. It was found that a segment length of 6 s, with a 75% overlap, enhanced the classifier performance. Feature selection was carried out to speed the algorithm running time. A nested cross-validation approach was performed for hyperparameter tuning and classifier training and testing. User-dependent and -independent approaches (differing in whether the system must undergo an additional training phase for each new user) were evaluated. Results indicate that accelerometers can be used to create a robust system to recognise large sets of Construction worker activities automatically. The K-Nearest Neighbours and Gradient Boosting algorithms were selected according to their performances, respectively, for the user-dependent and -independent scenarios. In both cases, the classifiers showed balanced accuracies above 84% for their respective approaches and test groups. Results also indicate that a user-dependent approach using task groups provides the highest accuracy.

27 citations

Journal ArticleDOI
TL;DR: The aim of the work is to obtain an accurate and flexible tool for consistently executing and managing the unmanned monitoring of construction sites by using distributed acoustic sensors by using a Deep Belief Network based approach.
Abstract: In this paper, we propose a Deep Belief Network (DBN) based approach for the classification of audio signals to improve work activity identification and remote surveillance of construction projects. The aim of the work is to obtain an accurate and flexible tool for consistently executing and managing the unmanned monitoring of construction sites by using distributed acoustic sensors. In this paper, ten classes of multiple construction equipment and tools, frequently and broadly used in construction sites, have been collected and examined to conduct and validate the proposed approach. The input provided to the DBN consists in the concatenation of several statistics evaluated by a set of spectral features, like MFCCs and mel-scaled spectrogram. The proposed architecture, along with the preprocessing and the feature extraction steps, has been described in details while the effectiveness of the proposed idea has been demonstrated by some numerical results, evaluated by using real-world recordings. The final overall accuracy on the test set is up to 98% and is a significantly improved performance compared to other state-of-the-are approaches. A practical and real-time application of the presented method has been also proposed in order to apply the classification scheme to sound data recorded in different environmental scenarios.

23 citations

Book ChapterDOI
01 Jan 2021
TL;DR: This work developed an application for the classification of different types and brands of construction vehicles and tools, which operates on the emitted audio through a stack of convolutional layers, demonstrating its effectiveness in environmental sound classification (ESC) achieving a high accuracy.
Abstract: Convolutional Neural Networks (CNNs) have been widely used in the field of audio recognition and classification, since they often provide positive results. Motivated by the success of this kind of approach and the lack of practical methodologies for the monitoring of construction sites by using audio data, we developed an application for the classification of different types and brands of construction vehicles and tools, which operates on the emitted audio through a stack of convolutional layers. The proposed architecture works on the mel-spectrogram representation of the input audio frames and it demonstrates its effectiveness in environmental sound classification (ESC) achieving a high accuracy. In summary, our contribution shows that techniques employed for general ESC can be also successfully adapted to a more specific environmental sound classification task, such as event recognition in construction sites.

18 citations

References
More filters
Journal ArticleDOI
01 Oct 2001
TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Abstract: Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, aaa, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.

79,257 citations

Journal ArticleDOI
Tin Kam Ho1
TL;DR: A method to construct a decision tree based classifier is proposed that maintains highest accuracy on training data and improves on generalization accuracy as it grows in complexity.
Abstract: Much of previous attention on decision trees focuses on the splitting criteria and optimization of tree sizes. The dilemma between overfitting and achieving maximum accuracy is seldom resolved. A method to construct a decision tree based classifier is proposed that maintains highest accuracy on training data and improves on generalization accuracy as it grows in complexity. The classifier consists of multiple trees constructed systematically by pseudorandomly selecting subsets of components of the feature vector, that is, trees constructed in randomly chosen subspaces. The subspace method is compared to single-tree classifiers and other forest construction methods by experiments on publicly available datasets, where the method's superiority is demonstrated. We also discuss independence between trees in a forest and relate that to the combined classification accuracy.

5,984 citations

Journal ArticleDOI
Naomi Altman1
TL;DR: Kernel and nearest-neighbor regression estimators are local versions of univariate location estimators, and so they can readily be introduced to beginning students and consulting clients who are familiar with such summaries as the sample mean and median.
Abstract: Nonparametric regression is a set of techniques for estimating a regression curve without making strong assumptions about the shape of the true regression function. These techniques are therefore useful for building and checking parametric models, as well as for data description. Kernel and nearest-neighbor regression estimators are local versions of univariate location estimators, and so they can readily be introduced to beginning students and consulting clients who are familiar with such summaries as the sample mean and median.

4,298 citations

Journal ArticleDOI
John Makhoul1
01 Apr 1975
TL;DR: This paper gives an exposition of linear prediction in the analysis of discrete signals as a linear combination of its past values and present and past values of a hypothetical input to a system whose output is the given signal.
Abstract: This paper gives an exposition of linear prediction in the analysis of discrete signals The signal is modeled as a linear combination of its past values and present and past values of a hypothetical input to a system whose output is the given signal In the frequency domain, this is equivalent to modeling the signal spectrum by a pole-zero spectrum The major part of the paper is devoted to all-pole models The model parameters are obtained by a least squares analysis in the time domain Two methods result, depending on whether the signal is assumed to be stationary or nonstationary The same results are then derived in the frequency domain The resulting spectral matching formulation allows for the modeling of selected portions of a spectrum, for arbitrary spectral shaping in the frequency domain, and for the modeling of continuous as well as discrete spectra This also leads to a discussion of the advantages and disadvantages of the least squares error criterion A spectral interpretation is given to the normalized minimum prediction error Applications of the normalized error are given, including the determination of an "optimal" number of poles The use of linear prediction in data compression is reviewed For purposes of transmission, particular attention is given to the quantization and encoding of the reflection (or partial correlation) coefficients Finally, a brief introduction to pole-zero modeling is given

4,206 citations

Book ChapterDOI
William W. Cohen1
09 Jul 1995
TL;DR: This paper evaluates the recently-proposed rule learning algorithm IREP on a large and diverse collection of benchmark problems, and proposes a number of modifications resulting in an algorithm RIPPERk that is very competitive with C4.5 and C 4.5rules with respect to error rates, but much more efficient on large samples.
Abstract: Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recently-proposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error rates higher than those of C4.5 and C4.5rules. We then propose a number of modifications resulting in an algorithm RIPPERk that is very competitive with C4.5rules with respect to error rates, but much more efficient on large samples. RIPPERk obtains error rates lower than or equivalent to C4.5rules on 22 of 37 benchmark problems, scales nearly linearly with the number of training examples, and can efficiently process noisy datasets containing hundreds of thousands of examples.

4,081 citations