scispace - formally typeset
Search or ask a question
BookDOI

Advances in Cryptology — CRYPTO’ 99

01 Jan 1999-
About: The article was published on 1999-01-01 and is currently open access. It has received 2795 citations till now.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete- variable, continuous-variable, and distributed-phase-reference protocols).
Abstract: Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on an eavesdropper's power. This article provides a concise up-to-date review of QKD, biased toward the practical side. Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete-variable, continuous-variable, and distributed-phase-reference protocols).

2,926 citations

Book
01 Jan 2004
TL;DR: This guide explains the basic mathematics, describes state-of-the-art implementation methods, and presents standardized protocols for public-key encryption, digital signatures, and key establishment, as well as side-channel attacks and countermeasures.
Abstract: After two decades of research and development, elliptic curve cryptography now has widespread exposure and acceptance. Industry, banking, and government standards are in place to facilitate extensive deployment of this efficient public-key mechanism. Anchored by a comprehensive treatment of the practical aspects of elliptic curve cryptography (ECC), this guide explains the basic mathematics, describes state-of-the-art implementation methods, and presents standardized protocols for public-key encryption, digital signatures, and key establishment. In addition, the book addresses some issues that arise in software and hardware implementation, as well as side-channel attacks and countermeasures. Readers receive the theoretical fundamentals as an underpinning for a wealth of practical and accessible knowledge about efficient application. Features & Benefits: * Breadth of coverage and unified, integrated approach to elliptic curve cryptosystems * Describes important industry and government protocols, such as the FIPS 186-2 standard from the U.S. National Institute for Standards and Technology * Provides full exposition on techniques for efficiently implementing finite-field and elliptic curve arithmetic* Distills complex mathematics and algorithms for easy understanding* Includes useful literature references, a list of algorithms, and appendices on sample parameters, ECC standards, and software toolsThis comprehensive, highly focused reference is a useful and indispensable resource for practitioners, professionals, or researchers in computer science, computer engineering, network design, and network data security.

2,893 citations

Journal ArticleDOI
TL;DR: A non-iterative solution to the PnP problem—the estimation of the pose of a calibrated camera from n 3D-to-2D point correspondences—whose computational complexity grows linearly with n, which can be done in O(n) time by expressing these coordinates as weighted sum of the eigenvectors of a 12×12 matrix.
Abstract: We propose a non-iterative solution to the PnP problem--the estimation of the pose of a calibrated camera from n 3D-to-2D point correspondences--whose computational complexity grows linearly with n This is in contrast to state-of-the-art methods that are O(n 5) or even O(n 8), without being more accurate Our method is applicable for all n?4 and handles properly both planar and non-planar configurations Our central idea is to express the n 3D points as a weighted sum of four virtual control points The problem then reduces to estimating the coordinates of these control points in the camera referential, which can be done in O(n) time by expressing these coordinates as weighted sum of the eigenvectors of a 12×12 matrix and solving a small constant number of quadratic equations to pick the right weights Furthermore, if maximal precision is required, the output of the closed-form solution can be used to initialize a Gauss-Newton scheme, which improves accuracy with negligible amount of additional time The advantages of our method are demonstrated by thorough testing on both synthetic and real-data

2,598 citations

Book ChapterDOI
22 May 2005
TL;DR: A new powerful attack on MD5 is presented, which unlike most differential attacks, does not use the exclusive-or as a measure of difference, but instead uses modular integer subtraction as the measure.
Abstract: MD5 is one of the most widely used cryptographic hash functions nowadays. It was designed in 1992 as an improvement of MD4, and its security was widely studied since then by several authors. The best known result so far was a semi free-start collision, in which the initial value of the hash function is replaced by a non-standard value, which is the result of the attack. In this paper we present a new powerful attack on MD5 which allows us to find collisions efficiently. We used this attack to find collisions of MD5 in about 15 minutes up to an hour computation time. The attack is a differential attack, which unlike most differential attacks, does not use the exclusive-or as a measure of difference, but instead uses modular integer subtraction as the measure. We call this kind of differential a modular differential. An application of this attack to MD4 can find a collision in less than a fraction of a second. This attack is also applicable to other hash functions, such as RIPEMD and HAVAL.

1,583 citations

Journal ArticleDOI
Ran Canetti1
TL;DR: In this article, the authors present general definitions of security for multiparty cryptographic protocols, with focus on the task of evaluating a probabilistic function of the parties' inputs, and show that, with respect to these definitions, security is preserved under a natural composition operation.
Abstract: We present general definitions of security for multiparty cryptographic protocols, with focus on the task of evaluating a probabilistic function of the parties' inputs. We show that, with respect to these definitions, security is preserved under a natural composition operation. The definitions follow the general paradigm of known definitions; yet some substantial modifications and simplifications are introduced. The composition operation is the natural ``subroutine substitution'' operation, formalized by Micali and Rogaway. We consider several standard settings for multiparty protocols, including the cases of eavesdropping, Byzantine, nonadaptive and adaptive adversaries, as well as the information-theoretic and the computational models. In particular, in the computational model we provide the first definition of security of protocols that is shown to be preserved under composition.

1,523 citations