scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Advancing global change biology through experimental manipulations: Where have we been and where might we go?

01 Jan 2020-Global Change Biology (Glob Chang Biol)-Vol. 26, Iss: 1, pp 287-299
TL;DR: This commentary summarizes the publication history of Global Change Biology for works on experimental manipulations over the past 25 years and highlights a number of key publications.
Abstract: This commentary summarizes the publication history of Global Change Biology for works on experimental manipulations over the past 25 years and highlights a number of key publications. The retrospective summary is then followed by some thoughts on the future of experimental work as it relates to mechanistic understanding and methodological needs. Experiments for elevated CO2 atmospheres and anticipated warming scenarios which take us beyond historical analogs are suggested as future priorities. Disturbance is also highlighted as a key agent of global change. Because experiments are demanding of both personnel effort and limited fiscal resources, the allocation of experimental investments across Earth's biomes should be done in ecosystems of key importance. Uncertainty analysis and broad community consultation should be used to identify research questions and target biomes that will yield substantial gains in predictive confidence and societal relevance. A full range of methodological approaches covering small to large spatial scales will continue to be justified as a source of mechanistic understanding. Nevertheless, experiments operating at larger spatial scales encompassing organismal, edaphic, and environmental diversity of target ecosystems are favored, as they allow for the assessment of long-term biogeochemical feedbacks enabling a full range of questions to be addressed. Such studies must also include adequate investment in measurements of key interacting variables (e.g., water and nutrient availability and budgets) to enable mechanistic understanding of responses and to interpret context dependency. Integration of ecosystem-scale manipulations with focused process-based manipulations, networks, and large-scale observations will aid more complete understanding of ecosystem responses, context dependence, and the extrapolation of results. From the outset, these studies must be informed by and integrated with ecosystem models that provide quantitative predictions from their embedded mechanistic hypotheses. A true two-way interaction between experiments and models will simultaneously increase the rate and robustness of Global Change research.
Citations
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that gradient designs outperform replicated designs for detecting and quantifying nonlinear responses, suggesting that a move to gradient designs in ecological experiments could be a major step towards unravelling underlying response patterns to continuous and interacting environmental drivers in a feasible and statistically powerful way.
Abstract: A fundamental challenge in experimental ecology is to capture nonlinearities of ecological responses to interacting environmental drivers. Here, we demonstrate that gradient designs outperform replicated designs for detecting and quantifying nonlinear responses. We report the results of (1) multiple computer simulations and (2) two purpose-designed empirical experiments. The findings consistently revealed that unreplicated sampling at a maximum number of sampling locations maximised prediction success (i.e. the R² to the known truth) irrespective of the amount of stochasticity and the underlying response surfaces, including combinations of two linear, unimodal or saturating drivers. For the two empirical experiments, the same pattern was found, with gradient designs outperforming replicated designs in revealing the response surfaces of underlying drivers. Our findings suggest that a move to gradient designs in ecological experiments could be a major step towards unravelling underlying response patterns to continuous and interacting environmental drivers in a feasible and statistically powerful way.

143 citations

Journal ArticleDOI
01 Sep 2020
TL;DR: In this paper, the authors evaluate boreal peatland C losses from warming and find that increasing losses are associated with increased decomposition and corroborated by measures of declining peat elevation.
Abstract: To evaluate boreal peatland C losses from warming, novel technologies were used to expose intact bog plots in northern Minnesota to a range of future temperatures (+0°C to +9°C) with and without elevated CO2 (eCO2). After 3 years, warming linearly increased net C loss at a rate of 31.3 g C·m−2·year−1·°C−1. Increasing losses were associated with increased decomposition and corroborated by measures of declining peat elevation. Effects of eCO2 were minor. Results indicate a range of C losses from boreal peatlands 4.5 to 18 times faster than historical rates of accumulation, with substantial emissions of CO2 and CH4 to the atmosphere. A model of peatland C cycle captured the temperature response dominated by peat decomposition under ambient CO2, but improvements will be needed to predict the lack of observable responses to elevated CO2 concentrations thus far. Article includes 19 pages of supplemental materials.

58 citations


Cites background from "Advancing global change biology thr..."

  • ...Experimental manipulations are critical to projections of ecosystem structural and functional responses to climatic and atmospheric change (Hanson & Walker, 2020; Mooney et al., 2013; Osmond et al., 2004)....

    [...]

Journal ArticleDOI
TL;DR: A critical look at the information infrastructure that connects ecosystem modeling and measurement efforts is taken, and a roadmap to community cyberinfrastructure development is proposed that can reduce the divisions between empirical research and modeling and accelerate the pace of discovery.
Abstract: In an era of rapid global change, our ability to understand and predict Earth's natural systems is lagging behind our ability to monitor and measure changes in the biosphere. Bottlenecks to informing models with observations have reduced our capacity to fully exploit the growing volume and variety of available data. Here, we take a critical look at the information infrastructure that connects ecosystem modeling and measurement efforts, and propose a roadmap to community cyberinfrastructure development that can reduce the divisions between empirical research and modeling and accelerate the pace of discovery. A new era of data-model integration requires investment in accessible, scalable, and transparent tools that integrate the expertise of the whole community, including both modelers and empiricists. This roadmap focuses on five key opportunities for community tools: the underlying foundations of community cyberinfrastructure; data ingest; calibration of models to data; model-data benchmarking; and data assimilation and ecological forecasting. This community-driven approach is a key to meeting the pressing needs of science and society in the 21st century.

43 citations

Journal ArticleDOI
TL;DR: In this article, the authors carried out a detailed synthesis of fine-root trait responses to experimental warming by performing a meta-analysis of 964 paired observations from 177 publications, highlighting the significant changes in fine root traits in response to warming as well as the importance of warming magnitude and duration.
Abstract: Whether and how warming alters functional traits of absorptive plant roots remains to be answered across the globe. Tackling this question is crucial to better understanding terrestrial responses to climate change as fine-root traits drive many ecosystem processes. We carried out a detailed synthesis of fine-root trait responses to experimental warming by performing a meta-analysis of 964 paired observations from 177 publications. Warming increased fine-root biomass, production, respiration and nitrogen concentration as well as decreased root carbon : nitrogen ratio and nonstructural carbohydrates. Warming effects on fine-root biomass decreased with greater warming magnitude, especially in short-term experiments. Furthermore, the positive effect of warming on fine-root biomass was strongest in deeper soil horizons and in colder and drier regions. Total fine-root length, morphology, mortality, life span and turnover were unresponsive to warming. Our results highlight the significant changes in fine-root traits in response to warming as well as the importance of warming magnitude and duration in understanding fine-root responses. These changes have strong implications for global soil carbon stocks in a warmer world associated with increased root-derived carbon inputs into deeper soil horizons and increases in fine-root respiration.

42 citations

Journal ArticleDOI
TL;DR: The authors examined the effect of warming on a suite of season-wide plant phenophases and found that experimental warming caused larger phenological shifts in reproductive versus vegetative phenophas and advanced reproductive phenophase and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%.
Abstract: Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra.

41 citations

References
More filters
Journal ArticleDOI
TL;DR: The FLUXNET project as mentioned in this paper is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere.
Abstract: FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70°N to 30°S. FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, http://www-eosdis.ornl.gov/FLUXNET/.) Second, the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide information for validating computations of net primary productivity, evaporation, and energy absorption that are being generated by sensors mounted on the NASA Terra satellite. Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil–plant–atmosphere trace gas exchange models. Findings so far include 1) net CO 2 exchange of temperate broadleaved forests increases by about 5.7 g C m −2 day −1 for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem CO 2 exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of CO 2 flux density exhibits peaks at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature of net CO 2 exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor flux densities.

3,162 citations

Journal ArticleDOI
TL;DR: The results from this review may provide the most plausible estimates of how plants in their native environments and field-grown crops will respond to rising atmospheric [CO(2)]; but even with FACE there are limitations, which are discussed.
Abstract: Contents Summary 1 I. What is FACE? 2 II. Materials and methods 2 III. Photosynthetic carbon uptake 3 IV. Acclimation of photosynthesis 6 V. Growth, above-ground production and yield 8 VI. So, what have we learned? 10 Acknowledgements 11 References 11 Appendix 1. References included in the database for meta-analyses 14 Appendix 2. Results of the meta-analysis of FACE effects 18 Summary Free-air CO2 enrichment (FACE) experiments allow study of the effects of elevated [CO2] on plants and ecosystems grown under natural conditions without enclosure. Data from 120 primary, peer-reviewed articles describing physiology and production in the 12 large-scale FACE experiments (475–600 ppm) were collected and summarized using meta-analytic techniques. The results confirm some results from previous chamber experiments: light-saturated carbon uptake, diurnal C assimilation, growth and above-ground production increased, while specific leaf area and stomatal conductance decreased in elevated [CO2]. There were differences in FACE. Trees were more responsive than herbaceous species to elevated [CO2]. Grain crop yields increased far less than anticipated from prior enclosure studies. The broad direction of change in photosynthesis and production in elevated [CO2] may be similar in FACE and enclosure studies, but there are major quantitative differences: trees were more responsive than other functional types; C4 species showed little response; and the reduction in plant nitrogen was small and largely accounted for by decreased Rubisco. The results from this review may provide the most plausible estimates of how plants in their native environments and field-grown crops will respond to rising atmospheric [CO2]; but even with FACE there are limitations, which are also discussed.

3,140 citations

Journal ArticleDOI
TL;DR: In this article, a system of models for the simulation of gas and energy exchange of a leaf of a C3 plant in free air is presented, where the physiological processes are simulated by sub-models that: (a) give net photosynthesis (An) as a function of environmental and leaf parameters and stomatal conductance (gs); (b) give g, as well as the concentration of CO2 and H2O in air at the leaf surface and the current rate of photosynthesis of the leaf.

2,030 citations