scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Adversarial Examples for Semantic Segmentation and Object Detection

01 Oct 2017-pp 1378-1387
TL;DR: Zhang et al. as discussed by the authors proposed Dense Adversary Generation (DAG), which applies to the state-of-the-art networks for segmentation and detection, and found that the adversarial perturbations can be transferred across networks with different training data, based on different architectures, and even for different recognition tasks.
Abstract: It has been well demonstrated that adversarial examples, i.e., natural images with visually imperceptible perturbations added, cause deep networks to fail on image classification. In this paper, we extend adversarial examples to semantic segmentation and object detection which are much more difficult. Our observation is that both segmentation and detection are based on classifying multiple targets on an image (e.g., the target is a pixel or a receptive field in segmentation, and an object proposal in detection). This inspires us to optimize a loss function over a set of targets for generating adversarial perturbations. Based on this, we propose a novel algorithm named Dense Adversary Generation (DAG), which applies to the state-of-the-art networks for segmentation and detection. We find that the adversarial perturbations can be transferred across networks with different training data, based on different architectures, and even for different recognition tasks. In particular, the transfer ability across networks with the same architecture is more significant than in other cases. Besides, we show that summing up heterogeneous perturbations often leads to better transfer performance, which provides an effective method of black-box adversarial attack.
Citations
More filters
Proceedings ArticleDOI
18 Jun 2018
TL;DR: This work proposes a general attack algorithm, Robust Physical Perturbations (RP2), to generate robust visual adversarial perturbations under different physical conditions and shows that adversarial examples generated using RP2 achieve high targeted misclassification rates against standard-architecture road sign classifiers in the physical world under various environmental conditions, including viewpoints.
Abstract: Recent studies show that the state-of-the-art deep neural networks (DNNs) are vulnerable to adversarial examples, resulting from small-magnitude perturbations added to the input. Given that that emerging physical systems are using DNNs in safety-critical situations, adversarial examples could mislead these systems and cause dangerous situations. Therefore, understanding adversarial examples in the physical world is an important step towards developing resilient learning algorithms. We propose a general attack algorithm, Robust Physical Perturbations (RP2), to generate robust visual adversarial perturbations under different physical conditions. Using the real-world case of road sign classification, we show that adversarial examples generated using RP2 achieve high targeted misclassification rates against standard-architecture road sign classifiers in the physical world under various environmental conditions, including viewpoints. Due to the current lack of a standardized testing method, we propose a two-stage evaluation methodology for robust physical adversarial examples consisting of lab and field tests. Using this methodology, we evaluate the efficacy of physical adversarial manipulations on real objects. With a perturbation in the form of only black and white stickers, we attack a real stop sign, causing targeted misclassification in 100% of the images obtained in lab settings, and in 84.8% of the captured video frames obtained on a moving vehicle (field test) for the target classifier.

1,617 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review recent findings on adversarial examples for DNNs, summarize the methods for generating adversarial samples, and propose a taxonomy of these methods.
Abstract: With rapid progress and significant successes in a wide spectrum of applications, deep learning is being applied in many safety-critical environments. However, deep neural networks (DNNs) have been recently found vulnerable to well-designed input samples called adversarial examples . Adversarial perturbations are imperceptible to human but can easily fool DNNs in the testing/deploying stage. The vulnerability to adversarial examples becomes one of the major risks for applying DNNs in safety-critical environments. Therefore, attacks and defenses on adversarial examples draw great attention. In this paper, we review recent findings on adversarial examples for DNNs, summarize the methods for generating adversarial examples, and propose a taxonomy of these methods. Under the taxonomy, applications for adversarial examples are investigated. We further elaborate on countermeasures for adversarial examples. In addition, three major challenges in adversarial examples and the potential solutions are discussed.

1,203 citations

Proceedings ArticleDOI
30 Oct 2017
TL;DR: MagNet, a framework for defending neural network classifiers against adversarial examples, is proposed and it is shown empirically that MagNet is effective against the most advanced state-of-the-art attacks in blackbox and graybox scenarios without sacrificing false positive rate on normal examples.
Abstract: Deep learning has shown impressive performance on hard perceptual problems. However, researchers found deep learning systems to be vulnerable to small, specially crafted perturbations that are imperceptible to humans. Such perturbations cause deep learning systems to mis-classify adversarial examples, with potentially disastrous consequences where safety or security is crucial. Prior defenses against adversarial examples either targeted specific attacks or were shown to be ineffective. We propose MagNet, a framework for defending neural network classifiers against adversarial examples. MagNet neither modifies the protected classifier nor requires knowledge of the process for generating adversarial examples. MagNet includes one or more separate detector networks and a reformer network. The detector networks learn to differentiate between normal and adversarial examples by approximating the manifold of normal examples. Since they assume no specific process for generating adversarial examples, they generalize well. The reformer network moves adversarial examples towards the manifold of normal examples, which is effective for correctly classifying adversarial examples with small perturbation. We discuss the intrinsic difficulties in defending against whitebox attack and propose a mechanism to defend against graybox attack. Inspired by the use of randomness in cryptography, we use diversity to strengthen MagNet. We show empirically that MagNet is effective against the most advanced state-of-the-art attacks in blackbox and graybox scenarios without sacrificing false positive rate on normal examples.

1,007 citations

Proceedings ArticleDOI
15 Oct 2018
TL;DR: A thorough overview of the evolution of this research area over the last ten years and beyond is provided, starting from pioneering, earlier work on the security of non-deep learning algorithms up to more recent work aimed to understand the security properties of deep learning algorithms, in the context of computer vision and cybersecurity tasks.
Abstract: Deep neural networks and machine-learning algorithms are pervasively used in several applications, ranging from computer vision to computer security. In most of these applications, the learning algorithm has to face intelligent and adaptive attackers who can carefully manipulate data to purposely subvert the learning process. As these algorithms have not been originally designed under such premises, they have been shown to be vulnerable to well-crafted, sophisticated attacks, including training-time poisoning and test-time evasion attacks (also known as adversarial examples). The problem of countering these threats and learning secure classifiers in adversarial settings has thus become the subject of an emerging, relevant research field known as adversarial machine learning. The purposes of this tutorial are: (a) to introduce the fundamentals of adversarial machine learning to the security community; (b) to illustrate the design cycle of a learning-based pattern recognition system for adversarial tasks; (c) to present novel techniques that have been recently proposed to assess performance of pattern classifiers and deep learning algorithms under attack, evaluate their vulnerabilities, and implement defense strategies that make learning algorithms more robust to attacks; and (d) to show some applications of adversarial machine learning to pattern recognition tasks like object recognition in images, biometric identity recognition, spam and malware detection.

656 citations

Proceedings Article
24 May 2019
TL;DR: TRADES as mentioned in this paper decomposes the prediction error for adversarial examples (robust error) as the sum of the natural (classification) error and boundary error, and provides a differentiable upper bound using the theory of classification-calibrated loss.
Abstract: We identify a trade-off between robustness and accuracy that serves as a guiding principle in the design of defenses against adversarial examples. Although this problem has been widely studied empirically, much remains unknown concerning the theory underlying this trade-off. In this work, we decompose the prediction error for adversarial examples (robust error) as the sum of the natural (classification) error and boundary error, and provide a differentiable upper bound using the theory of classification-calibrated loss, which is shown to be the tightest possible upper bound uniform over all probability distributions and measurable predictors. Inspired by our theoretical analysis, we also design a new defense method, TRADES, to trade adversarial robustness off against accuracy. Our proposed algorithm performs well experimentally in real-world datasets. The methodology is the foundation of our entry to the NeurIPS 2018 Adversarial Vision Challenge in which we won the 1st place out of ~2,000 submissions, surpassing the runner-up approach by $11.41\%$ in terms of mean $\ell_2$ perturbation distance.

640 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations