scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Aerodynamics of two-dimensional bristled wings in low-Reynolds-number flow

01 Apr 2021-AIP Advances (AIP Publishing LLC)-Vol. 11, Iss: 4, pp 045322
About: This article is published in AIP Advances.The article was published on 2021-04-01 and is currently open access. It has received 7 citations till now. The article focuses on the topics: Aerodynamics.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , detailed flow around each bristle numerically and revealed the interaction mechanism of two bristled wings in the fling motion was obtained, and the results showed that the vertical force of the bristled wing is similar to that of the corresponding flat-plate wings, but the drag of the wing is much smaller.
Abstract: Smallest flying insects commonly have bristled wings and use novel aerodynamic mechanisms to provide flight forces, such as the fling mechanism. In the fling motion, the left and right wings are initially parallel to each other, and then the wings rotate around the trailing edge and "open" to form a V shape. Previous studies lacked the detailed flow around bristles, so the interaction mechanism of the two bristled wings in the fling motion was not well understood. In the present study, we obtained the detailed flow around each bristle numerically and revealed the interaction mechanism of two bristled wings. The results are as follows. During the fling, the vertical force of the bristled wings is similar to that of the corresponding flat-plate wings, but the drag of the bristled wings is much smaller. When the initial distance between wings is small, the opening drag of the bristled wings can be one order of magnitude smaller than that of the flat-plate wings. This is due to the different wing-wing interaction mechanisms of the two types of wings: for the flat-plate wings, during the fling motion, a "cavity" is created between the wings, producing a very large drag on the wings; while for the bristled wings, there are gaps between the bristles and Stokes flows move through the gaps, thus the "cavity" effect is much weaker. Very low "opening" drag may be one of the advantages of using bristled wings for the smallest insects.

3 citations

Journal ArticleDOI
TL;DR: In this article , a 3D model of the bristled wing was constructed to numerically investigate the detailed flow field and the aerodynamic force of the wing, and it was shown that the 3D effect at low Re increases the drag of the fly compared with that of the corresponding 2D wing.
Abstract: The smallest insects fly with bristled wings at very low Reynolds numbers (Re) and use the drag of the wings to provide the weight-supporting force and thrust. Previous studies used two-dimensional (2-D) models to study the aerodynamic force and the detailed flow field of the bristled wings, neglecting the three-dimensional (3-D) effect caused by the finite span. At high Re, the 3-D effect is known to decrease the aerodynamic force on a body, compared with the 2-D case. However, the bristled wing operates at very low Re, for which the 3-D effect is unknown. Here, a 3-D model of the bristled wing is constructed to numerically investigate the detailed flow field and the aerodynamic force of the wing. Our findings are as follows: The 3-D effect at low Re increases the drag of the bristled wing compared with that of the corresponding 2-D wing, which is contrary to that of the high-Re case. The drag increase is limited to the tip region of the bristles and could be explained by the increase of the flow velocity around the tip region. The spanwise length of the drag-increasing region (measuring from the wing tip) is about 0.23 chord length and does not vary as the wing aspect ratio increases. The amount of the drag increment in the tip region does not vary as the wing aspect ratio increases either, leading to the decrease of the drag coefficient with increasing aspect ratio.

2 citations

Journal ArticleDOI
TL;DR: In this paper , a 3D model of the bristled wing was constructed to numerically investigate the detailed flow field and the aerodynamic force of the wing, and it was shown that the 3D effect at low Re increases the drag of the fly compared with that of the corresponding 2D wing.
Abstract: The smallest insects fly with bristled wings at very low Reynolds numbers (Re) and use the drag of the wings to provide the weight-supporting force and thrust. Previous studies used two-dimensional (2-D) models to study the aerodynamic force and the detailed flow field of the bristled wings, neglecting the three-dimensional (3-D) effect caused by the finite span. At high Re, the 3-D effect is known to decrease the aerodynamic force on a body, compared with the 2-D case. However, the bristled wing operates at very low Re, for which the 3-D effect is unknown. Here, a 3-D model of the bristled wing is constructed to numerically investigate the detailed flow field and the aerodynamic force of the wing. Our findings are as follows: The 3-D effect at low Re increases the drag of the bristled wing compared with that of the corresponding 2-D wing, which is contrary to that of the high-Re case. The drag increase is limited to the tip region of the bristles and could be explained by the increase of the flow velocity around the tip region. The spanwise length of the drag-increasing region (measuring from the wing tip) is about 0.23 chord length and does not vary as the wing aspect ratio increases. The amount of the drag increment in the tip region does not vary as the wing aspect ratio increases either, leading to the decrease of the drag coefficient with increasing aspect ratio.

2 citations

Journal ArticleDOI
TL;DR: In this paper , the aerodynamic forces and flows of two simplified bristled wings experiencing such a motion, compared with the case of membrane wings (flat-plate wings), were studied to see if there is any advantage in using the bristled wing.
Abstract: Abstract Most of the smallest flying insects use bristled wings. It was observed that during the second half of their upstroke, the left and right wings become parallel and close to each other at the back, and move upward at zero angle of attack. In this period, the wings may produce drag (negative vertical force) and side forces which tend to push two wings apart. Here we study the aerodynamic forces and flows of two simplified bristled wings experiencing such a motion, compared with the case of membrane wings (flat-plate wings), to see if there is any advantage in using the bristled wings. The method of computational fluid dynamics is used in the study. The results are as follows. In the motion of two bristled wings, the drag acting on each wing is 40% smaller than the case of a single bristled wing conducting the same motion, and only a very small side force is produced. But in the case of the flat-plate wings, although there is similar drag reduction, the side force on each wing is larger than that of the bristled wing by an order of magnitude (the underlying physical reason is discussed in the paper). Thus, if the smallest insects use membrane wings, their flight muscles need to overcome large side forces in order to maintain the intended motion for less negative lift, whereas using bristled wings do not have this problem. Therefore, the adoption of bristled wings can be beneficial during upward movement of the wings near the end of the upstroke, which may be one reason why most of the smallest insects adopt them.

1 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the average lift coefficient, Reynolds number, the aerodynamic power, the moment of inertia of the wing mass and the dynamic efficiency in animals which perform normal hovering with horizontally beating wings are derived.
Abstract: 1. On the assumption that steady-state aerodynamics applies, simple analytical expressions are derived for the average lift coefficient, Reynolds number, the aerodynamic power, the moment of inertia of the wing mass and the dynamic efficiency in animals which perform normal hovering with horizontally beating wings. 2. The majority of hovering animals, including large lamellicorn beetles and sphingid moths, depend mainly on normal aerofoil action. However, in some groups with wing loading less than 10 N m -2 (1 kgf m -2 ), non-steady aerodynamics must play a major role, namely in very small insects at low Reynolds number, in true hover-flies (Syrphinae), in large dragonflies (Odonata) and in many butterflies (Lepidoptera Rhopalocera). 3. The specific aerodynamic power ranges between 1.3 and 4.7 WN -1 (11-40 cal h -1 gf -1 ) but power output does not vary systematically with size, inter alia because the lift/drag ratio deteriorates at low Reynolds number. 4. Comparisons between metabolic rate, aerodynamic power and dynamic efficiency show that the majority of insects require and depend upon an effective elastic system in the thorax which counteracts the bending moments caused by wing inertia. 5. The free flight of a very small chalcid wasp Encarsia formosa has been analysed by means of slow-motion films. At this low Reynolds number (10-20), the high lift co-efficient of 2 or 3 is not possible with steady-state aerodynamics and the wasp must depend almost entirely on non-steady flow patterns. 6. The wings of Encarsia are moved almost horizontally during hovering, the body being vertical, and there are three unusual phases in the wing stroke: the clap , the fling and the flip . In the clap the wings are brought together at the top of the morphological upstroke. In the fling, which is a pronation at the beginning of the morphological downstroke, the opposed wings are flung open like a book, hinging about their posterior margins. In the flip, which is a supination at the beginning of the morphological upstroke, the wings are rapidly twisted through about 180°. 7. The fling is a hitherto undescribed mechanism for creating lift and for setting up the appropriate circulation over the wing in anticipation of the downstroke. In the case of Encarsia the calculated and observed wing velocities at which lift equals body weight are in agreement, and lift is produced almost instantaneously from the beginning of the downstroke and without any Wagner effect. The fling mechanism seems to be involved in the normal flight of butterflies and possibly of Drosophila and other small insects. Dimensional and other considerations show that it could be a useful mechanism in birds and bats during take-off and in emergencies. 8. The flip is also believed to be a means of setting up an appropriate circulation around the wing, which has hitherto escaped attention; but its operation is less well understood. It is not confined to Encarsia but operates in other insects, not only at the beginning of the upstroke (supination) but also at the beginning of the downstroke where a flip (pronation) replaces the clap and fling of Encarsia . A study of freely flying hover-flies strongly indicates that the Syrphinae (and Odonata) depend almost entirely upon the flip mechanism when hovering. In the case of these insects a transient circulation is presumed to be set up before the translation of the wing through the air, by the rapid pronation (or supination) which affects the stiff anterior margin before the soft posterior portions of the wing. In the flip mechanism vortices of opposite sense must be shed, and a Wagner effect must be present. 9. In some hovering insects the wing twistings occur so rapidly that the speed of propagation of the elastic torsional wave from base to tip plays a significant role and appears to introduce beneficial effects. 10. Non-steady periods, particularly flip effects, are present in all flapping animals and they will modify and become superimposed upon the steady-state pattern as described by the mathematical model presented here. However, the accumulated evidence indicates that the majority of hovering animals conform reasonably well with that model. 11. Many new types of analysis are indicated in the text and are now open for future theoretical and experimental research.

1,279 citations

Journal ArticleDOI
TL;DR: The bristled wing of a thrips cannot be explained in terms of increased fluid-dynamic forces, because it is a little smaller than those on the solid wing.
Abstract: SUMMARY Thrips fly at a chord-based Reynolds number of approximately 10 using bristled rather than solid wings. We tested two dynamically scaled mechanical models of a thrips forewing. In the bristled design, cylindrical rods model the bristles of the forewing; the solid design was identical to the bristled one in shape, but the spaces between the `bristles9 were filled in by membrane. We studied four different motion patterns: (i) forward motion at a constant forward velocity, (ii) forward motion at a translational acceleration, (iii) rotational motion at a constant angular velocity and (iv) rotational motion at an angular acceleration. Fluid-dynamic forces acting on the bristled model wing were a little smaller than those on the solid wing. Therefore, the bristled wing of a thrips cannot be explained in terms of increased fluid-dynamic forces.

73 citations