scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Aerosol generation in public restrooms

22 Mar 2021-Physics of Fluids (AIP Publishing LLC AIP Publishing)-Vol. 33, Iss: 3, pp 033320-033320
TL;DR: In this article, the authors measured the size and number of droplets generated by flushing toilets and urinals in a public restroom and found that the particular designs tested in the study generate a large number of aerosol in the size range 0.3 μ m − 3 μ m, which can reach heights of at least 1.52 m.
Abstract: Aerosolized droplets play a central role in the transmission of various infectious diseases, including Legionnaire's disease, gastroenteritis-causing norovirus, and most recently COVID-19. Respiratory droplets are known to be the most prominent source of transmission for COVID-19; however, alternative routes may exist given the discovery of small numbers of viable viruses in urine and stool samples. Flushing biomatter can lead to the aerosolization of micro-organisms; thus, there is a likelihood that bioaerosols generated in public restrooms may pose a concern for the transmission of COVID-19, especially since these areas are relatively confined, experience heavy foot traffic, and may suffer from inadequate ventilation. To quantify the extent of aerosolization, we measure the size and number of droplets generated by flushing toilets and urinals in a public restroom. The results indicate that the particular designs tested in the study generate a large number of droplets in the size range 0.3 μ m– 3 μ m, which can reach heights of at least 1.52 m. Covering the toilet reduced aerosol levels but did not eliminate them completely, suggesting that aerosolized droplets escaped through small gaps between the cover and the seat. In addition to consistent increases in aerosol levels immediately after flushing, there was a notable rise in ambient aerosol levels due to the accumulation of droplets from multiple flushes conducted during the tests. This highlights the need for incorporating adequate ventilation in the design and operation of public spaces, which can help prevent aerosol accumulation in high occupancy areas and mitigate the risk of airborne disease transmission.
Citations
More filters
Journal ArticleDOI
TL;DR: The risk of infectious disease transmission in public washrooms causes concern particularly in the context of the COVID-19 pandemic as mentioned in this paper, and a systematic review aims to assess the risk of transmission of viral or bacterial infections through inhalation, surface contact, and faecal-oral routes in public indoor washrooms in healthcare and non-healthcare environments.

23 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated SARS COVID-2 aerosol transport in age-specific airway systems using a highly asymmetric airway model and fluent solver (ANSYS 19.2).
Abstract: The recent outbreak of the COVID-19 causes significant respirational health problems, including high mortality rates worldwide. The deadly corona virus-containing aerosol enters the atmospheric air through sneezing, exhalation, or talking, assembling with the particulate matter, and subsequently transferring to the respiratory system. This recent outbreak illustrates that the severe acute respiratory syndrome (SARS) coronavirus-2 is deadlier for aged people than for other age groups. It is evident that the airway diameter reduces with age, and an accurate understanding of SARS aerosol transport through different elderly people's airways could potentially help the overall respiratory health assessment, which is currently lacking in the literature. This first-ever study investigates SARS COVID-2 aerosol transport in age-specific airway systems. A highly asymmetric age-specific airway model and fluent solver (ANSYS 19.2) are used for the investigation. The computational fluid dynamics measurement predicts higher SARS COVID-2 aerosol concentration in the airway wall for older adults than for younger people. The numerical study reports that the smaller SARS coronavirus-2 aerosol deposition rate in the right lung is higher than that in the left lung, and the opposite scenario occurs for the larger SARS coronavirus-2 aerosol rate. The numerical results show a fluctuating trend of pressure at different generations of the age-specific model. The findings of this study would improve the knowledge of SARS coronavirus-2 aerosol transportation to the upper airways which would thus ameliorate the targeted aerosol drug delivery system.

21 citations

Journal ArticleDOI
TL;DR: The use of automatic toilet bowl cleaners can reduce the number of microorganisms ejected during a flush as mentioned in this paper, which is a significant risk from both aerosols and fomites in restrooms.
Abstract: The goal of good toilet hygiene is minimizing the potential for pathogen transmission. Control of odors is also socially important and believed to be a societal measure of cleanliness. Understanding the need for good cleaning and disinfecting is even more important today considering the potential spread of emerging pathogens such as SARS-CoV-2 virus. While the flush toilet was a major advancement in achieving these objectives, exposure to pathogens can occur from failure to clean and disinfectant areas within a restroom, as well as poor hand hygiene. The build-up of biofilm within a toilet bowl/urinal including sink can result in the persistence of pathogens and odors. During flushing, pathogens can be ejected from the toilet bowl/urinal/sink and be transmitted by inhalation and contaminated fomites. Use of automatic toilet bowl cleaners can reduce the number of microorganisms ejected during a flush. Salmonella bacteria can colonize the underside of the rim of toilets and persist up to 50 days. Pathogenic enteric bacteria appear in greater numbers in the biofilm found in toilets than in the water. Source tracking of bacteria in homes has demonstrated that during cleaning enteric bacteria are transferred from the toilet to the bathroom sinks and that these same bacteria colonize cleaning tools used in the restroom. Quantitative microbial risk assessment has shown that significant risks exist from both aerosols and fomites in restrooms. Cleaning with soaps and detergents without the use of disinfectants in public restrooms may spread bacteria and viruses throughout the restroom. Odors in restrooms are largely controlled by ventilation and flushing volume in toilet/urinals. However, this results in increased energy and water usage. Contamination of both the air and surfaces in restrooms is well documented. Better quantification of the risks of infection are needed as this well help determine what interventions will minimize these risks.

15 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the physical mechanism and governing rules behind the significantly long survival of coronavirus in aerosols, which is the subject of the present investigation, and they attributed the virus survival timescale to the fact that the drying of small ( ∼μm-nm) droplets is governed by the excess internal pressure within the droplet, which stems from the disjoining pressure due to the cohesive intermolecular interaction between the liquid molecules and the Laplace-pressure.
Abstract: COVID (CoronaVirus Disease)-19, caused by severe acute respiratory syndrome-CoronaVirus-2 (SARS-CoV-2) virus, predominantly transmits via airborne route, as highlighted by recent studies. Furthermore, recently published titer measurements of SARS-CoV-2 in aerosols have disclosed that the coronavirus can survive for hours. A consolidated knowledge on the physical mechanism and governing rules behind the significantly long survival of coronavirus in aerosols is lacking, which is the subject of the present investigation. We model the evaporation of aerosolized droplets of diameter ≤5 μm. The conventional diffusion-limited evaporation is not valid to model the evaporation of small size (μm–nm) droplets since it predicts drying time on the order of milliseconds. Also, the sedimentation timescale of desiccated droplets is on the order of days and overpredicts the virus survival time; hence, it does not corroborate with the above-mentioned titer-decay timescale. We attribute the virus survival timescale to the fact that the drying of small ( ∼μm–nm) droplets is governed, in principle, by the excess internal pressure within the droplet, which stems from the disjoining pressure due to the cohesive intermolecular interaction between the liquid molecules and the Laplace-pressure. The model predictions for the temporal reduction in the aerosolized droplet number density agree well with the temporal decay of virus titer. The findings, therefore, provide insight on the survival of coronavirus in aerosols, which is particularly important to mitigate the spread of COVID-19 from indoors.

13 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper investigated whether human feces and public toilets play a critical role in the transmission of COVID-19 and showed that pushing the ratio of public toilets to the local population in a city to its optimal level would help to reduce the total infection in a region.

11 citations

References
More filters
Journal ArticleDOI
TL;DR: Aerosol and Surface Stability of SARS-CoV-2 In this research letter, investigators report on the stability of Sars-CoVs and the viability of the two virus under experimental conditions.
Abstract: Aerosol and Surface Stability of SARS-CoV-2 In this research letter, investigators report on the stability of SARS-CoV-2 and SARS-CoV-1 under experimental conditions. The viability of the two virus...

7,412 citations

Journal ArticleDOI
12 May 2020-JAMA
TL;DR: Results of PCR and viral RNA testing for SARS-CoV-2 in bronchoalveolar fluid, sputum, feces, blood, and urine specimens from patients with COVID-19 infection in China are described to identify possible means of non-respiratory transmission.
Abstract: This study describes results of PCR and viral RNA testing for SARS-CoV-2 in bronchoalveolar fluid, sputum, feces, blood, and urine specimens from patients with COVID-19 infection in China to identify possible means of non-respiratory transmission.

4,242 citations

Journal ArticleDOI
Fei Xiao1, Meiwen Tang1, Xiaobin Zheng1, Ye Liu1, Xiaofeng Li1, Hong Shan1 
TL;DR: No abstract available Keywords: ACE2; Gastrointestinal Infection; Oral-Fecal Transmission; SARS-CoV-2.

2,185 citations

Journal ArticleDOI
TL;DR: Investigation on patients in a local hospital who were infected with a novel coronavirus found the presence of 2019-nCoV in anal swabs and blood, and more anal swab positives than oral swabs positives in a later stage of infection, suggesting shedding and thereby transmitted through oral–fecal route.
Abstract: In December 2019, a novel coronavirus (2019-nCoV) caused an outbreak in Wuhan, China, and soon spread to other parts of the world. It was believed that 2019-nCoV was transmitted through respiratory tract and then induced pneumonia, thus molecular diagnosis based on oral swabs was used for confirmation of this disease. Likewise, patient will be released upon two times of negative detection from oral swabs. However, many coronaviruses can also be transmitted through oral-fecal route by infecting intestines. Whether 2019-nCoV infected patients also carry virus in other organs like intestine need to be tested. We conducted investigation on patients in a local hospital who were infected with this virus. We found the presence of 2019-nCoV in anal swabs and blood as well, and more anal swab positives than oral swab positives in a later stage of infection, suggesting shedding and thereby transmitted through oral-fecal route. We also showed serology test can improve detection positive rate thus should be used in future epidemiology. Our report provides a cautionary warning that 2019-nCoV may be shed through multiple routes.

1,524 citations

Journal ArticleDOI
TL;DR: Real-time RT-PCR results of all respiratory and faecal samples from patients with coronavirus disease 2019 (COVID-19) at the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China, throughout the course of their illness and obligated quarantine period show associations that should be interpreted with caution because of the possibility of confounding.

1,320 citations