scispace - formally typeset
Search or ask a question
Journal Article•DOI•

Affinity Hydrogels for Protein Delivery.

01 Apr 2021-Trends in Pharmacological Sciences (Elsevier Current Trends)-Vol. 42, Iss: 4, pp 300-312
TL;DR: In this article, the authors summarize and highlight progress in developing affinity hydrogels (i.e., hydrogel functionalized with protein-bound ligands) for controlled protein release.
About: This article is published in Trends in Pharmacological Sciences.The article was published on 2021-04-01. It has received 27 citations till now. The article focuses on the topics: Self-healing hydrogels & Controlled release.
Citations
More filters
Journal Article•DOI•
TL;DR: This work aims to critically review injectable nanocomposite hydrogels, their preparation methods, properties, functionalities, and versatile biomedical and pharmaceutical applications such as tissue engineering, drug delivery, and cancer labeling and therapy.

40 citations

Journal Article•DOI•
TL;DR: The practical role of electromagnetic induction on nerve repair is demonstrated, and the window of synergistic therapy combining the bioelectricity and neurotrophic factors towards peripheral nerve injury is opened.

15 citations

Journal Article•DOI•
01 Dec 2022-Polymers
TL;DR: An overview of hydrogel characteristics and functionalities is provided in this paper , where the authors focus on discussing the various kinds of polysaccharide-based systems on their potential for effectively delivering drugs.
Abstract: Over the last years of research on drug delivery systems (DDSs), natural polymer-based hydrogels have shown many scientific advances due to their intrinsic properties and a wide variety of potential applications. While drug efficacy and cytotoxicity play a key role, adopting a proper DDS is crucial to preserve the drug along the route of administration and possess desired therapeutic effect at the targeted site. Thus, drug delivery technology can be used to overcome the difficulties of maintaining drugs at a physiologically related serum concentration for prolonged periods. Due to their outstanding biocompatibility, polysaccharides have been thoroughly researched as a biological material for DDS advancement. To formulate a modified DDS, polysaccharides can cross-link with different molecules, resulting in hydrogels. According to our recent findings, targeted drug delivery at a certain spot occurs due to external stimulation such as temperature, pH, glucose, or light. As an adjustable biomedical device, the hydrogel has tremendous potential for nanotech applications in involved health areas such as pharmaceutical and biomedical engineering. An overview of hydrogel characteristics and functionalities is provided in this review. We focus on discussing the various kinds of hydrogel-based systems on their potential for effectively delivering drugs that are made of polysaccharides.

11 citations

Journal Article•DOI•
TL;DR: Aptamers are a unique class of synthetic ligands interacting with not only their target molecules with high affinities and specificities but also their complementary sequences with high fidelity as mentioned in this paper.
Abstract: Molecular recognition is essential to the development of biomaterials. Aptamers are a unique class of synthetic ligands interacting with not only their target molecules with high affinities and specificities but also their complementary sequences with high fidelity. Thus, aptamers have recently attracted significant attention in the development of an emerging class of biomaterials, that is, aptamer-functionalized hydrogels. In this review, we introduce the methods of incorporating aptamers into hydrogels as pendant motifs or crosslinkers. We further introduce the functions of these hydrogels in recognizing proteins, cells, and analytes through four applications including protein delivery, cell capture, regenerative medicine, and molecular biosensing. Notably, as aptamer-functionalized hydrogels have the characteristics of both aptamers and hydrogels, their potential applications are broad and beyond the scope of this review. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.

10 citations

References
More filters
Journal Article•DOI•
03 Aug 1990-Science
TL;DR: High-affinity nucleic acid ligands for a protein were isolated by a procedure that depends on alternate cycles of ligand selection from pools of variant sequences and amplification of the bound species.
Abstract: High-affinity nucleic acid ligands for a protein were isolated by a procedure that depends on alternate cycles of ligand selection from pools of variant sequences and amplification of the bound species. Multiple rounds exponentially enrich the population for the highest affinity species that can be clonally isolated and characterized. In particular one eight-base region of an RNA that interacts with the T4 DNA polymerase was chosen and randomized. Two different sequences were selected by this procedure from the calculated pool of 65,536 species. One is the wild-type sequence found in the bacteriophage mRNA; one is varied from wild type at four positions. The binding constants of these two RNA's to T4 DNA polymerase are equivalent. These protocols with minimal modification can yield high-affinity ligands for any protein that binds nucleic acids as part of its function; high-affinity ligands could conceivably be developed for any target molecule.

9,367 citations

Journal Article•DOI•
30 Aug 1990-Nature
TL;DR: Subpopulations of RNA molecules that bind specifically to a variety of organic dyes have been isolated from a population of random sequence RNA molecules.
Abstract: Subpopulations of RNA molecules that bind specifically to a variety of organic dyes have been isolated from a population of random sequence RNA molecules. Roughly one in 10(10) random sequence RNA molecules folds in such a way as to create a specific binding site for small ligands.

8,781 citations

Journal Article•DOI•
TL;DR: This Review discusses how different mechanisms interact and can be integrated to exert fine control in time and space over the drug presentation, and collects experimental release data from the literature and presents quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.
Abstract: Hydrogel delivery systems can leverage therapeutically beneficial outcomes of drug delivery and have found clinical use. Hydrogels can provide spatial and temporal control over the release of various therapeutic agents, including small-molecule drugs, macromolecular drugs and cells. Owing to their tunable physical properties, controllable degradability and capability to protect labile drugs from degradation, hydrogels serve as a platform in which various physiochemical interactions with the encapsulated drugs control their release. In this Review, we cover multiscale mechanisms underlying the design of hydrogel drug delivery systems, focusing on physical and chemical properties of the hydrogel network and the hydrogel-drug interactions across the network, mesh, and molecular (or atomistic) scales. We discuss how different mechanisms interact and can be integrated to exert fine control in time and space over the drug presentation. We also collect experimental release data from the literature, review clinical translation to date of these systems, and present quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.

2,457 citations

Journal Article•DOI•
TL;DR: The present article is a comprehensive review of the current state of the art of mathematical modeling drug release from HPMC-based delivery systems and discusses the crucial points of the most important theories.

2,354 citations

Journal Article•DOI•
TL;DR: Aptamers are different from antibodies, yet they mimic properties of antibodies in a variety of diagnostic formats, and may play a key role either in conjunction with, or in place of, antibodies in the form of aptamer-based diagnostic products in the market.
Abstract: Antibodies, the most popular class of molecules providing molecular recognition needs for a wide range of applications, have been around for more than three decades. As a result, antibodies have made substantial contributions toward the advancement of diagnostic assays and have become indispensable in most diagnostic tests that are used routinely in clinics today. The development of the systematic evolution of ligands by exponential enrichment (SELEX) process, however, made possible the isolation of oligonucleotide sequences with the capacity to recognize virtually any class of target molecules with high affinity and specificity. These oligonucleotide sequences, referred to as "aptamers", are beginning to emerge as a class of molecules that rival antibodies in both therapeutic and diagnostic applications. Aptamers are different from antibodies, yet they mimic properties of antibodies in a variety of diagnostic formats. The demand for diagnostic assays to assist in the management of existing and emerging diseases is increasing, and aptamers could potentially fulfill molecular recognition needs in those assays. Compared with the bellwether antibody technology, aptamer research is still in its infancy, but it is progressing at a fast pace. The potential of aptamers may be realized in the near future in the form of aptamer-based diagnostic products in the market. In such products, aptamers may play a key role either in conjunction with, or in place of, antibodies. It is also likely that existing diagnostic formats may change according to the need to better harness the unique properties of aptamers.

2,178 citations