scispace - formally typeset
Search or ask a question
Journal ArticleDOI

After effects of noise-induced sleep disturbances on inhibitory functions.

02 Feb 2006-Life Sciences (Life Sci)-Vol. 78, Iss: 10, pp 1135-1142
TL;DR: Noise-induced sleep disturbances may be more sensitive indicators of moderate sleep disturbances caused by noise than performance measures, and decisional processes underlying overt responses are less vulnerable to noise-disturbed sleep than those related to inhibition.
Abstract: The study focuses on possible after effects of noise-induced sleep disturbances on inhibitory brain processes reflecting in performance changes and alternations of inhibition-related components of event-related potentials (ERPs). Following a quiet night and three nights, in which railway noise was presented with different levels, twelve women and ten men (19-28 years) performed a visual Go/Nogo task that contained stimuli either compatible or incompatible with a response. Noise-induced sleep disturbances are highly evident in worsening of subjective sleep quality but did not show up in significant changes of reaction time and error rate. A smaller N2 amplitude and longer latency to incompatible than to compatible stimuli as well as an unspecific attenuation of N2 amplitude under Noise were found. The amplitude of the fronto-central P3 was reduced under Noise compared to baseline only in Nogo trials. The amplitude of the parietal P3 in Go trials was smaller to incompatible than to compatible stimuli but was not affected by Noise. Disturbed sleep was associated with a decreased blink rate during task performance. The results suggest that physiological costs to maintain performance are increased after noisy nights. Decisional processes underlying overt responses (Go-P3) are less vulnerable to noise-disturbed sleep than those related to inhibition (Nogo-N2, NoGo-P3). The deficits may have been compensated by increased on-task concentration and thereby did not become apparent in the performance data. Inhibition-related ERPs may be more sensitive indicators of moderate sleep disturbances caused by noise than performance measures.
Citations
More filters
Journal ArticleDOI

[...]

TL;DR: Results suggest that temperament-based vulnerability serves as a statistical moderator of the link between poverty-related risk and children's executive functioning and implications for models of ecology and biology in shaping the development of children's self-regulation are discussed.
Abstract: In a predominantly low-income, population-based longitudinal sample of 1,259 children followed from birth, results suggest that chronic exposure to poverty and the strains of financial hardship were each uniquely predictive of young children's performance on measures of executive functioning. Results suggest that temperament-based vulnerability serves as a statistical moderator of the link between poverty-related risk and children's executive functioning. Implications for models of ecology and biology in shaping the development of children's self-regulation are discussed.

282 citations

Journal ArticleDOI

[...]

TL;DR: Evidence suggesting that background noise has both transient and sustained detrimental effects on central speech processing is reviewed to stress the importance to re-evaluate which noise levels can be considered safe for brain functions and raise concerns on the speech and cognitive abilities of individuals living in noisy environments.
Abstract: Background noise has become part of our everyday life in modern societies. Its presence affects both the ability to concentrate and communicate. Some individuals, like children, the elderly, and non-native speakers have pronounced problems in noisy environments. Here we review evidence suggesting that background noise has both transient and sustained detrimental effects on central speech processing. Studies on the effects of noise on neural processes have demonstrated hemispheric reorganization in speech processing in adult individuals during background noise. During noise, the well-known left hemisphere dominance in speech discrimination became right hemisphere preponderant. Furthermore, long-term exposure to noise has a persistent effect on the brain organization of speech processing and attention control. These results both stress the importance to re-evaluate which noise levels can be considered safe for brain functions and raise concerns on the speech and cognitive abilities of individuals living in noisy environments.

63 citations


Cites background from "After effects of noise-induced slee..."

  • [...]

  • [...]

  • [...]

Journal ArticleDOI

[...]

TL;DR: It is concluded that preretrieval processes associated with preparation to make a memory judgment are impaired, leading to greater reliance on postretrival processes, consistent with the view that impairments in executive control significantly contribute to deficits in controlled retrieval.
Abstract: Age-related cognitive impairments often include difficulty retrieving memories, particularly those that rely on executive control. In this paper we discuss the influence of the prefrontal cortex on memory retrieval, and the specific memory processes associated with the prefrontal cortex that decline in late adulthood. We conclude that preretrieval processes associated with preparation to make a memory judgment are impaired, leading to greater reliance on postretrieval processes. This is consistent with the view that impairments in executive control significantly contribute to deficits in controlled retrieval. Finally, we discuss age-related changes in sleep as a potential mechanism that contributes to deficiencies in executive control that are important for efficient retrieval. The sleep literature points to the importance of slow-wave sleep in restoration of prefrontal cortex function. Given that slow-wave sleep significantly declines with age, we hypothesize that age-related changes in slow-wave sleep could mediate age-related decline in executive control, manifesting a robust deficit in controlled memory retrieval processes. Interventions, like physical activity, that improve sleep could be effective methods to enhance controlled memory processes in late life.

52 citations


Cites methods from "After effects of noise-induced slee..."

  • [...]

  • [...]

Journal ArticleDOI

[...]

TL;DR: In this paper, the authors examined the relationship between noise and school children's executive functioning (EF) and found no significant main effects of ambient noise levels on EF, however, a significant interaction indicated adverse noise impacts on boy's EF.
Abstract: The objective of this study was to examine the relationships between noise and school children's executive functioning (EF). The study included 311 children (146 boys and 165 girls) aged 7–11 years, who lived in the center of Belgrade. Teachers rated children's EF on a standard scale evaluating their ability to work independently in a focused manner to achieve an end goal as well as children's ability to follow directions carefully. Residential noise exposure was estimated in three daytime intervals, one evening interval and two nighttime intervals in the middle of the streets where children lived. School noise exposure was measured on three different school days in front of children's schools. Socioeconomic status (mother's highest level of education and family income) was used as a statistical control. There were no significant main effects of ambient noise levels on EF, however, a significant interaction indicated adverse noise impacts on boy's EF. We discuss possible reasons for male EF vulnerability to noise.

33 citations

Journal ArticleDOI

[...]

TL;DR: Evaluated performance monitoring in a controlled study of experimental sleep deprivation using a traditional Flanker task provided insight into the neural underpinnings of performance failure during sleepiness and have implications for workplace and driving safety.
Abstract: There is a need to understand the neural basis of performance deficits that result from sleep deprivation. Performance monitoring tasks generate response-locked event-related potentials (ERPs), generated from the anterior cingulate cortex (ACC) located in the medial surface of the frontal lobe that reflect error processing. The outcome of previous research on performance monitoring during sleepiness has been mixed. The purpose of this study was to evaluate performance monitoring in a controlled study of experimental sleep deprivation using a traditional Flanker task, and to broaden this examination using a response inhibition task. Forty-nine young adults (24 male) were randomly assigned to a total sleep deprivation or rested control group. The sleep deprivation group was slower on the Flanker task and less accurate on a Go/NoGo task compared to controls. General attentional impairments were evident in stimulus-locked ERPs for the sleep deprived group: P300 was delayed on Flanker trials and smaller to Go-stimuli. Further, N2 was smaller to NoGo stimuli, and the response-locked ERN was smaller on both tasks, reflecting neurocognitive impairment during performance monitoring. In the Flanker task, higher error rate was associated with smaller ERN amplitudes for both groups. Examination of ERN amplitude over time showed that it attenuated in the rested control group as error rate increased, but such habituation was not apparent in the sleep deprived group. Poor performing sleep deprived individuals had a larger Pe response than controls, possibly indicating perseveration of errors. These data provide insight into the neural underpinnings of performance failure during sleepiness and have implications for workplace and driving safety.

26 citations

References
More filters
Journal ArticleDOI

[...]

TL;DR: EMCP permits retention of all trials in an ERP experiment, irrespective of ocular artifact, and has the advantage that separate correction factors are computed for blinks and movements and that these factors are based on data from the experimental session itself rather than from a separate calibration session.
Abstract: A new off-line procedure for dealing with ocular artifacts in ERP recording is described. The procedure (EMCP) uses EOG and EEG records for individual trials in an experimental session to estimate a propagation factor which describes the relationship between the EOG and EEG traces. The propagation factor is computed after stimulus-linked variability in both traces has been removed. Different propagation factors are computed for blinks and eye movements. Tests are presented which demonstrate the validity and reliability of the procedure. ERPs derived from trials corrected by EMCP are more similar to a 'true' ERP than are ERPs derived from either uncorrected or randomly corrected trials. The procedure also reduces the difference between ERPs which are based on trials with different degrees of EOG variance. Furthermore, variability at each time point, across trials, is reduced following correction. The propagation factor decreases from frontal to parietal electrodes, and is larger for saccades than blinks. It is more consistent within experimental sessions than between sessions. The major advantage of the procedure is that it permits retention of all trials in an ERP experiment, irrespective of ocular artifact. Thus, studies of populations characterized by a high degree of artifact, and those requiring eye movements as part of the experimental task, are made possible. Furthermore, there is no need to require subjects to restrict eye movement activity. In comparison to procedures suggested by others, EMCP also has the advantage that separate correction factors are computed for blinks and movements and that these factors are based on data from the experimental session itself rather than from a separate calibration session.

4,534 citations

Book

[...]

01 Mar 1973

1,922 citations

Journal ArticleDOI

[...]

TL;DR: The utility of P3 amplitude as a sensitive and diagnostic measure of processing capacity remains limited because the two principal task variables that have been used to manipulate capacity allocation have opposite effects on the amplitude.
Abstract: The present review focuses on the utility of the amplitude of P3 of as a measure of processing capacity and mental workload. The paper starts with a brief outline of the conceptual framework underlying the relationship between P3 amplitude and task demands, and the cognitive task manipulations that determine demands on capacity. P3 amplitude results are then discussed on the basis of an extensive review of the relevant literature. It is concluded that although it has often been assumed that P3 amplitude depends on the capacity for processing task relevant stimuli, the utility of P3 amplitude as a sensitive and diagnostic measure of processing capacity remains limited. The major factor that prompts this conclusion is that the two principal task variables that have been used to manipulate capacity allocation, namely task difficulty and task emphasis, have opposite effects on the amplitude of P3. I suggest that this is because, in many tasks, an increase in difficulty transforms the structure or actual content of the flow of information in the processing systems, thereby interfering with the very processes that underlie P3 generation. Finally, in an attempt to theoretically integrate the results of the reviewed studies, it is proposed that P3 amplitude reflects activation of elements in a event-categorization network that is controlled by the joint operation of attention and working memory.

1,430 citations

Journal ArticleDOI

[...]

TL;DR: Results are consistent with the view that the N2 in go/no-go tasks reflects conflict arising from competition between the execution and the inhibition of a single response, and suggest previous conceptions of the no-go N2 as indexing response inhibition may be in need of revision.
Abstract: Neuroimaging and computational modeling studies have led to the suggestion that response conflict monitoring by the anterior cingulate cortex plays a key role in cognitive control. For example, response conflict is high when a response must be withheld (no-go) in contexts in which there is a prepotent tendency to make an overt (go) response. An event-related brain potential (ERP) component, the N2, is more pronounced on no-go than on go trials and was previously thought to reflect the need to inhibit the go response. However, the N2 may instead reflect the high degree of response conflict on no-go trials. If so, an N2 should also be apparent when subjects make a go response in conditions in which no-go events are more common. To test this hypothesis, we collected high-density ERP data from subjects performing a go/no-go task, in which the relative frequency of go versus no-go stimuli was varied. Consistent with our hypothesis, an N2 was apparent on both go and no-go trials and showed the properties expected of an ERP measure of conflict detection on correct trials: (1) It was enhanced for low-frequency stimuli, irrespective of whether these stimuli were associated with generating or suppressing a response, and (2) it was localized to the anterior cingulate cortex. This suggests that previous conceptions of the no-go N2 as indexing response inhibition may be in need of revision. Instead, the results are consistent with the view that the N2 in go/no-go tasks reflects conflict arising from competition between the execution and the inhibition of a single response.

1,121 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the authors show that the treatment mean square and the treatment group interaction can be tested in the same approximate fashion by using the Box procedure, and that the conservative test would be $F(1, n - 1).
Abstract: The mixed model in a 2-way analysis of variance is characterized by a fixed classification, e.g., treatments, and a random classification, e.g., plots or individuals. If we consider $k$ different treatments each applied to everyone of $n$ individuals, and assume the usual analysis of variance assumptions of uncorrelated errors, equal variances and normality, an appropriate analysis for the set of $nk$ observations $x_{ij}, i = 1, 2, \cdots n, j = 1, 2, \cdots k$, is ???? where the $F$ ratio under the null hypothesis has the $F$ distribution with $(k - 1)$ and $(k - 1)(n - 1)$ degrees of freedom. As is well known, if we extend the situation so that the errors have equal correlations instead of being uncorrelated, the $F$ ratio has the same distribution. Under the null hypothesis, the numerator estimates the same quantity as the denominator, namely, $(1 - \rho)\sigma^2$, where $\rho$ is the constant correlation coefficient among the treatments. This case can also be considered as a sampling of $n$ vectors (individuals) from a $k$-variate normal population with variance-covariance matrix $$V = \sigma^2 \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \rho & & & \vdots \\ \vdots & & & \rho \\ \rho & \cdots & \rho & 1\end{pmatrix}.$$ If we consider this type of formulation and suppose the $k$ treatment errors to have a multivariate normal distribution with unknown variance-covariance matrix (the same for each individual), then the usual test described above is valid for $k = 2$. For $k > 2$, and $n \geqq k$, Hotelling's $T^2$ is the appropriate test for the homogeneity of the treatment means. However, the working statistician is sometimes confronted with the case where $k > n$, or he does not have the adequate means for computing large order inverse matrices and would therefore like to use the original test ratio which in general does not have the requisite $F$ distribution. Box [1] and [2] has given an approximate distribution of the test ratio to be $F\lbrack(k - 1)\epsilon, (k - 1)(n - 1)\epsilon\rbrack$ where $\epsilon$ is a function of the population variances and covariances and may further be approximated by the sample variances and covariances. We show in Section 3 that $\epsilon \geqq (k - 1)^{-1}$, and therefore a conservative test would be $F(1, n - 1)$. Box referred only to one group of $n$ individuals. We shall extend his results to a frequently occurring case, namely, the analysis of $g$ groups where the $\alpha$th group has $n_\alpha$ individuals, $\alpha = 1, 2, \cdots g$, and $\Sigma^g_{\alpha = 1} n_\alpha = N$. We will show that the treatment mean square and the treatment $\times$ group interaction can be tested in the same approximate fashion by using the Box procedure.

1,066 citations

Trending Questions (1)
How to activate sleep mode in noise Colorfit Pro 2 Oxy?

Inhibition-related ERPs may be more sensitive indicators of moderate sleep disturbances caused by noise than performance measures.