scispace - formally typeset
Open accessJournal ArticleDOI: 10.3390/BIOM11030372

Age-Related Skeletal Muscle Dysfunction Is Aggravated by Obesity: An Investigation of Contractile Function, Implications and Treatment.

02 Mar 2021-Vol. 11, Iss: 3, pp 372
Abstract: Obesity is a global epidemic and coupled with the unprecedented growth of the world's older adult population, a growing number of individuals are both old and obese. Whilst both ageing and obesity are associated with an increased prevalence of chronic health conditions and a substantial economic burden, evidence suggests that the coincident effects exacerbate negative health outcomes. A significant contributor to such detrimental effects may be the reduction in the contractile performance of skeletal muscle, given that poor muscle function is related to chronic disease, poor quality of life and all-cause mortality. Whilst the effects of ageing and obesity independently on skeletal muscle function have been investigated, the combined effects are yet to be thoroughly explored. Given the importance of skeletal muscle to whole-body health and physical function, the present study sought to provide a review of the literature to: (1) summarise the effect of obesity on the age-induced reduction in skeletal muscle contractile function; (2) understand whether obesity effects on skeletal muscle are similar in young and old muscle; (3) consider the consequences of these changes to whole-body functional performance; (4) outline important future work along with the potential for targeted intervention strategies to mitigate potential detrimental effects.

... read more

Topics: Skeletal muscle (56%), Sarcopenia (55%)

5 results found

Open accessJournal ArticleDOI: 10.3390/IJERPH18126649
Abstract: Background: An increasing body of evidence indicates that the phase angle (PhA) can be applied as a marker of nutritional status, disease prognosis, and mortality probability. Still, it is not known whether PhA can be used as an indicator of muscular quantity and strength and maximal aerobic capacity in overweight/obese former highly active individuals, an understudied population. This study aimed to analyze the association between PhA with skeletal muscle mass, maximal isometric strength, and maximal aerobic capacity through VO2max, in overweight/obese and inactive former athletes. Methods: Cross-sectional information of 94 (62 males) former adult athletes (age: 43.1 ± 9.4 years old; body mass index: 31.4 ± 4.8 kg/m2) taking part in a weight-loss clinical trial was analyzed. Total fat and fat-free mass were determined by dual-energy X-ray absorptiometry, while skeletal muscle mass was predicted from appendicular lean soft tissue. Values for upper- and lower-body maximal isometric strength were assessed by handgrip and leg press dynamometry. VO2max was determined by indirect calorimetry through a graded exercise test performed on a treadmill. Results: PhA was associated with skeletal muscle mass (r = 0.564, p < 0.001), upper-body strength (r = 0.556, p < 0.001), lower-body strength (r = 0.422, p < 0.001), and VO2max (r = 0.328, p = 0.013). These relationships remained significant for skeletal muscle mass (β = 2.158, p = 0.001), maximal isometric strength (upper-body: β = 2.846, p = 0.012; low-er-body: β = 24.209, p = 0.041) after adjusting for age, sex, and fat mass but not for VO2max (β = −0.163, p = 0.098). Conclusion: Our findings indicated that former athletes with higher values of PhA exhibited greater muscle mass and strength, despite sex, age, and body composition, which suggests that this simple raw BI parameter can be utilized as an indicator of muscle quantity and functionality in overweight/obese former athletes.

... read more

Topics: Isometric exercise (55%), Overweight (51%), Population (51%) ... show more

Journal ArticleDOI: 10.1016/J.EXGER.2021.111393
Abstract: Background Low muscle mass is associated with sarcopenia and increased mortality. Muscle mass, especially that of the limbs, is commonly estimated by dual-energy X-ray absorptiometry (DXA) or bioimpedance analysis (BIA). However, BIA-based predictive equations for estimating lean appendicular soft tissue mass (ALST) do not take into account body fat distribution, an important factor influencing DXA and BIA measurements. Objectives To develop and cross-validate a BIA-based equation for estimating ALST with DXA as criterion, and to compare our new formula to three previously published models. Methods One-hundred eighty-four older adults (140 women and 44 men) (age 71.5 ± 7.3 years, body mass index 27.9 ± 5.3 kg/m2) were recruited. Participants were randomly split into validation (n = 118) and cross-validation groups (n = 66). Bioelectrical resistance was obtained with a phase-sensitive 50 kHz BIA device. Results A BIA-based model was developed for appendicular lean soft tissue mass [ALST (kg) = 5.982 + (0.188 × S2 / resistance) + (0.014 × waist circumference) + (0.046 × Wt) + (3.881 × sex) − (0.053 × age), where sex is 0 if female or 1 if male, Wt is weight (kg), and S is stature (cm) (R2 = 0.86, SEE = 1.35 kg)]. Cross validation revealed r2 of 0.91 and no mean bias. Two of three previously published models showed a trend to significantly overestimate ALST in our sample (p Conclusions The new equation can be considered valid, with no observed bias and trend, thus affording practical means to quantify ALST mass in older adults.

... read more

Open accessJournal ArticleDOI: 10.1007/S11255-021-03056-6
Qifan Zhou1, Hailin Zhang1, Lixia Yin1, Guilian Li2  +2 moreInstitutions (2)
Abstract: Purpose Maintenance hemodialysis (MHD) patients are at high risk of sarcopenia. Gut microbiota affects host metabolic and may act in the occurrence of sarcopenia importantly. This study aimed to study the characterization of the gut microbiota in MHD patients with sarcopenia, and to further reveal the complex pathophysiology of sarcopenia in MHD patients. Methods Fecal samples and clinical data were collected from 30 MHD patients with sarcopenia, and 30 age-and-sex-matched MHD patients without sarcopenia in 1 general hospital of Jiangsu Province from December 2020 to March 2021. 16S rRNA sequencing technology was used to analyze the genetic sequence of the gut microbiota for evaluation of the diversity, species composition, and differential microbiota of the two groups. Results Compared to MHD patients without sarcopenia, the ACE index of patients with sarcopenia was lower (P = 0.014), and there was a structural difference in the β-diversity between the two groups (P = 0.001). At the genus level, the relative abundance of Tyzzerella_4 in the sarcopenia group was significantly higher than in the non-sarcopenia group (P = 0.039), and the relative abundance of Megamonas (P = 0.004), Coprococcus_2 (P = 0.038), and uncultured_bacterium_f_Muribaculaceae (P = 0.040) decreased significantly. Conclusion The diversity and structure of the gut microbiota of MHD patients with sarcopenia were altered. The occurrence of sarcopenia in MHD patients may be influenced by gut microbiota.

... read more

Topics: Sarcopenia (59%)

Open accessJournal ArticleDOI: 10.3390/JCM10214933
Praval Khanal1, Alun G. Williams2, Alun G. Williams1, Lingxiao He3  +6 moreInstitutions (3)
Abstract: Obesity may aggravate the effects of sarcopenia on skeletal muscle structure and function in the elderly, but no study has attempted to identify the gene variants associated with sarcopenia in obese women. Therefore, the aims of the present study were to: (1) describe neuromuscular function in sarcopenic and non-sarcopenic women with or without obesity; (2) identify gene variants associated with sarcopenia in older obese women. In 307 Caucasian women (71 ± 6 years, 66.3 ± 11.3 kg), skeletal muscle mass was estimated using bioelectric impedance, and function was tested with a 30 s one-leg standing-balance test. Biceps brachii thickness and vastus lateralis cross-sectional area (VLACSA) were measured with B-mode ultrasonography. Handgrip strength, maximum voluntary contraction elbow flexion (MVCEF), and knee extension torque (MVCKE) were measured by dynamometry, and MVCKE/VLACSA was calculated. Genotyping was performed for 24 single-nucleotide polymorphisms (SNPs), selected based on their previous associations with muscle-related phenotypes. Based on sarcopenia and obesity thresholds, groups were classified as sarcopenic obese, non-sarcopenic obese, sarcopenic non-obese, or non-sarcopenic non-obese. A two-way analysis of covariance was used to assess the main effects of sarcopenia and obesity on muscle-related phenotypes and binary logistic regression was performed for each SNP to investigate associations with sarcopenia in obesity. There were no significant obesity * sarcopenic status interactions for any of the investigated muscle-related phenotypic parameters. Neither sarcopenia nor obesity had a significant effect on biceps brachii thickness, but sarcopenia was associated with lower VLACSA (p = 0.003). Obesity was associated with lower MVCEF (p = 0.032), MVCKE (p = 0.047), and MVCKE/VLACSA (p = 0.012) with no significant effect of sarcopenia. Adjusted for age and height, three SNPs (ACTN3 rs1815739, MTHFR rs1801131, and MTHFR rs1537516) were associated with sarcopenia in obese participants. Sarcopenia was associated with a smaller muscle size, while obesity resulted in a lower muscle quality irrespective of sarcopenia. Three gene variants (ACTN3 rs1815739, MTHFR rs1801131, and MTHFR rs1537516) suspected to affect muscle function, homocysteine metabolism, or DNA methylation, respectively, were associated with sarcopenia in obese elderly women. Understanding the skeletal muscle features affected by sarcopenia and obesity, and identification of genes related to sarcopenia in obese women, may facilitate early detection of individuals at particular risk of sarcopenic obesity.

... read more

Topics: Sarcopenic obesity (75%), Sarcopenia (66%)

Open accessJournal ArticleDOI: 10.1155/2021/4493817
Andrea Gonzalez1, Andrea Gonzalez2, Andrea Gonzalez3, Felipe Simon3  +10 moreInstitutions (8)
Abstract: Sarcopenic obesity (SO) is a combination of obesity and sarcopenia that primarily develops in older people. Patients with SO have high fat mass, low muscle mass, low muscle strength, and low physical function. SO relates to metabolic syndrome and an increased risk of morbimortality. The prevalence of SO varies because of lacking consensus criteria regarding its definition and the methodological difficulty in diagnosing sarcopenia and obesity. SO includes systemic alterations such as insulin resistance, increased proinflammatory cytokines, age-associated hormonal changes, and decreased physical activity at pathophysiological levels. Interestingly, these alterations are influenced by oxidative stress, which is a critical factor in altering muscle function and the generation of metabolic dysfunctions. Thus, oxidative stress in SO alters muscle mass, the signaling pathways that control it, satellite cell functions, and mitochondrial and endoplasmic reticulum activities. Considering this background, our objectives in this review are to describe SO as a highly prevalent condition and look at the role of oxidative stress in SO pathophysiology.

... read more

Topics: Sarcopenic obesity (65%), Sarcopenia (57%), Metabolic syndrome (51%)

260 results found

Open accessJournal ArticleDOI: 10.1016/J.CELL.2006.11.013
15 Dec 2006-Cell
Abstract: Diminished mitochondrial oxidative phosphorylation and aerobic capacity are associated with reduced longevity. We tested whether resveratrol (RSV), which is known to extend lifespan, impacts mitochondrial function and metabolic homeostasis. Treatment of mice with RSV significantly increased their aerobic capacity, as evidenced by their increased running time and consumption of oxygen in muscle fibers. RSV's effects were associated with an induction of genes for oxidative phosphorylation and mitochondrial biogenesis and were largely explained by an RSV-mediated decrease in PGC-1alpha acetylation and an increase in PGC-1alpha activity. This mechanism is consistent with RSV being a known activator of the protein deacetylase, SIRT1, and by the lack of effect of RSV in SIRT1(-/-) MEFs. Importantly, RSV treatment protected mice against diet-induced-obesity and insulin resistance. These pharmacological effects of RSV combined with the association of three Sirt1 SNPs and energy homeostasis in Finnish subjects implicates SIRT1 as a key regulator of energy and metabolic homeostasis.

... read more

Topics: Mitochondrial biogenesis (61%), Mitochondrion (53%), SRT1720 (52%) ... show more

3,498 Citations

Open accessJournal ArticleDOI: 10.1093/AGEING/AFY169
01 Jan 2019-Age and Ageing
Abstract: Background in 2010, the European Working Group on Sarcopenia in Older People (EWGSOP) published a sarcopenia definition that aimed to foster advances in identifying and caring for people with sarcopenia. In early 2018, the Working Group met again (EWGSOP2) to update the original definition in order to reflect scientific and clinical evidence that has built over the last decade. This paper presents our updated findings. Objectives to increase consistency of research design, clinical diagnoses and ultimately, care for people with sarcopenia. Recommendations sarcopenia is a muscle disease (muscle failure) rooted in adverse muscle changes that accrue across a lifetime; sarcopenia is common among adults of older age but can also occur earlier in life. In this updated consensus paper on sarcopenia, EWGSOP2: (1) focuses on low muscle strength as a key characteristic of sarcopenia, uses detection of low muscle quantity and quality to confirm the sarcopenia diagnosis, and identifies poor physical performance as indicative of severe sarcopenia; (2) updates the clinical algorithm that can be used for sarcopenia case-finding, diagnosis and confirmation, and severity determination and (3) provides clear cut-off points for measurements of variables that identify and characterise sarcopenia. Conclusions EWGSOP2's updated recommendations aim to increase awareness of sarcopenia and its risk. With these new recommendations, EWGSOP2 calls for healthcare professionals who treat patients at risk for sarcopenia to take actions that will promote early detection and treatment. We also encourage more research in the field of sarcopenia in order to prevent or delay adverse health outcomes that incur a heavy burden for patients and healthcare systems.

... read more

Topics: Sarcopenia (63%), Sarcopenic obesity (58%)

3,248 Citations

Open accessJournal ArticleDOI: 10.1093/GERONA/61.10.1059
Abstract: BACKGROUND: The loss of muscle mass is considered to be a major determinant of strength loss in aging. However, large-scale longitudinal studies examining the association between the loss of mass and strength in older adults are lacking. METHODS: Three-year changes in muscle mass and strength were determined in 1880 older adults in the Health, Aging and Body Composition Study. Knee extensor strength was measured by isokinetic dynamometry. Whole body and appendicular lean and fat mass were assessed by dual-energy x-ray absorptiometry and computed tomography. RESULTS: Both men and women lost strength, with men losing almost twice as much strength as women. Blacks lost about 28% more strength than did whites. Annualized rates of leg strength decline (3.4% in white men, 4.1% in black men, 2.6% in white women, and 3.0% in black women) were about three times greater than the rates of loss of leg lean mass ( approximately 1% per year). The loss of lean mass, as well as higher baseline strength, lower baseline leg lean mass, and older age, was independently associated with strength decline in both men and women. However, gain of lean mass was not accompanied by strength maintenance or gain (ss coefficients; men, -0.48 +/- 4.61, p =.92, women, -1.68 +/- 3.57, p =.64). CONCLUSIONS: Although the loss of muscle mass is associated with the decline in strength in older adults, this strength decline is much more rapid than the concomitant loss of muscle mass, suggesting a decline in muscle quality. Moreover, maintaining or gaining muscle mass does not prevent aging-associated declines in muscle strength.

... read more

Topics: Lean body mass (59%)

2,021 Citations

Journal ArticleDOI: 10.1152/JAPPLPHYSIOL.00347.2003
Timothy J. Doherty1Institutions (1)
Abstract: Aging is associated with progressive loss of neuromuscular function that often leads to progressive disability and loss of independence. The term sarcopenia is now commonly used to describe the loss of skeletal muscle mass and strength that occurs in concert with biological aging. By the seventh and eighth decade of life, maximal voluntary contractile strength is decreased, on average, by 20-40% for both men and women in proximal and distal muscles. Although age-associated decreases in strength per unit muscle mass, or muscle quality, may play a role, the majority of strength loss can be accounted for by decreased muscle mass. Multiple factors lead to the development of sarcopenia and the associated impact on function. Loss of skeletal muscle fibers secondary to decreased numbers of motoneurons appears to be a major contributing influence, but other factors, including decreased physical activity, altered hormonal status, decreased total caloric and protein intake, inflammatory mediators, and factors leading to altered protein synthesis, must also be considered. The prevalence of sarcopenia, which may be as high as 30% for those ≥60 yr, will increase as the percentage of the very old continues to grow in our populations. The link between sarcopenia and disability among elderly men and women highlights the need for continued research into the development of the most effective interventions to prevent or at least partially reverse sarcopenia, including the role of resistance exercise and other novel pharmacological and nutritional interventions.

... read more

Topics: Sarcopenia (68%), Skeletal muscle (50%)

1,582 Citations

Journal ArticleDOI: 10.1152/JAPPLPHYSIOL.00246.2003
Abstract: Sarcopenia, the reduction of muscle mass and strength that occurs with aging, is widely considered one of the major causes of disability in older persons. Surprisingly, criteria that may help a clinician to identify persons with impaired muscle function are still lacking. Using data from a large representative sample of the general population, we examined how muscle function and calf muscle area change with aging and affect mobility in men and women free of neurological conditions. We tested several putative indicators of sarcopenia, including knee extension isometric torque, handgrip, lower extremity muscle power, and calf muscle area. For each indicator, sarcopenia was considered to be present when the measure was >2 SDs below the mean. For all four measures, the prevalence of sarcopenia increased with age, both in men and women. The age-associated gradient in prevalence was maximum for muscle power and minimum for calf-muscle area. However, lower extremity muscle power was no better than knee-extension torque or handgrip in the early identification of poor mobility, defined either as walking speed <0.8 m/s or inability to walk at least 1 km without difficulty and without developing symptoms. Optimal cutoff values that can be used in the clinical practice to identify older persons with poor mobility were developed. The findings of the study lay the basis for a cost-effective, clinical marker of sarcopenia based on a measure of isometric handgrip strength. Our findings should be verified in a longitudinal study.

... read more

Topics: Sarcopenia (65%), Hand strength (54%), Isometric exercise (53%) ... show more

1,474 Citations

No. of citations received by the Paper in previous years