scispace - formally typeset
Open accessJournal ArticleDOI: 10.3390/APP11052282

Agro-Nanotechnology as an Emerging Field: A Novel Sustainable Approach for Improving Plant Growth by Reducing Biotic Stress

04 Mar 2021-Applied Sciences (Multidisciplinary Digital Publishing Institute)-Vol. 11, Iss: 5, pp 2282
Abstract: In the present era, the global need for food is increasing rapidly; nanomaterials are a useful tool for improving crop production and yield. The application of nanomaterials can improve plant growth parameters. Biotic stress is induced by many microbes in crops and causes disease and high yield loss. Every year, approximately 20–40% of crop yield is lost due to plant diseases caused by various pests and pathogens. Current plant disease or biotic stress management mainly relies on toxic fungicides and pesticides that are potentially harmful to the environment. Nanotechnology emerged as an alternative for the sustainable and eco-friendly management of biotic stress induced by pests and pathogens on crops. In this review article, we assess the role and impact of different nanoparticles in plant disease management, and this review explores the direction in which nanoparticles can be utilized for improving plant growth and crop yield.

... read more

Topics: Plant disease (63%), Biotic stress (60%)
Citations
  More

7 results found


Open accessJournal ArticleDOI: 10.3390/APP11094212
06 May 2021-Applied Sciences
Abstract: Every year a million tonnes of calcium rich agro and industrial waste are generated around the whole globe. These calcium rich waste like finger citron, shells of cockle, mussel, oysters etc., and egg shell are biological sources which have various organic compounds. The inorganic calcium rich waste includes gypsum, dolomite, sludge etc., which are produced in surplus amount globally. Most of these by-products are mainly dumped, while few are used for land-filling purposes which leads to the pollution. These agro and industrial by-products could be processed for the recovery of calcium carbonate and calcium oxide particles by physical and chemical method. The recovery of calcium carbonate and calcium oxide particles from such by products make them biocompatible. Moreover, the products are economical due to their synthesis from waste materials. Here, in this current review work we have emphasized on the all the calcium rich agro industries and industrial by products, especially their processing by various approaches. Further, we have also focused on the properties and application of such calcium carbonate and oxide particles for the remediation of organic and inorganic pollutants from the environments. The recovery of such particles from these byproducts is considered not only economical and eco-friendly but it also minimizes the pollution present in the form of solid waste.

... read more

Topics: Industrial waste (60%), Calcium carbonate (58%), Calcium oxide (57%) ... read more

10 Citations


Open accessJournal ArticleDOI: 10.1016/J.ENVRES.2021.111373
Abstract: The recent spread of severe acute respiratory syndrome coronavirus (SAR-CoV-2) and the accompanied coronavirus disease 2019 (COVID-19) has continued ceaselessly despite the implementations of popular measures, which include social distancing and outdoor face masking as recommended by the World Health Organization. Due to the unstable nature of the virus, leading to the emergence of new variants that are claimed to be more and rapidly transmissible, there is a need for further consideration of the alternative potential pathways of the virus transmissions to provide the needed and effective control measures. This review aims to address this important issue by examining the transmission pathways of SARS-CoV-2 via indirect contacts such as fomites and aerosols, extending to water, food, and other environmental compartments. This is essentially required to shed more light regarding the speculation of the virus spread through these media as the available information regarding this is fragmented in the literature. The existing state of the information on the presence and persistence of SARS-CoV-2 in water-food-environmental compartments is essential for cause-and-effect relationships of human interactions and environmental samples to safeguard the possible transmission and associated risks through these media. Furthermore, the integration of effective remedial measures previously used to tackle the viral outbreaks and pandemics, and the development of new sustainable measures targeting at monitoring and curbing the spread of SARS-CoV-2 were emphasized. This study concluded that alternative transmission pathways via human interactions with environmental samples should not be ignored due to the evolving of more infectious and transmissible SARS-CoV-2 variants.

... read more

10 Citations


Open accessJournal ArticleDOI: 10.3390/BIOLOGY10080791
Vishnu D. Rajput1, Tatiana Minkina1, Morteza Feizi2, Arpna Kumari1  +10 moreInstitutions (8)
17 Aug 2021-Biology
Abstract: Silicon (Si) is considered a non-essential element similar to cadmium, arsenic, lead, etc., for plants, yet Si is beneficial to plant growth, so it is also referred to as a quasi-essential element (similar to aluminum, cobalt, sodium and selenium). An element is considered quasi-essential if it is not required by plants but its absence results in significant negative consequences or anomalies in plant growth, reproduction and development. Si is reported to reduce the negative impacts of different stresses in plants. The significant accumulation of Si on the plant tissue surface is primarily responsible for these positive influences in plants, such as increasing antioxidant activity while reducing soil pollutant absorption. Because of these advantageous properties, the application of Si-based nanoparticles (Si-NPs) in agricultural and food production has received a great deal of interest. Furthermore, conventional Si fertilizers are reported to have low bioavailability; therefore, the development and implementation of nano-Si fertilizers with high bioavailability could be crucial for viable agricultural production. Thus, in this context, the objectives of this review are to summarize the effects of both Si and Si-NPs on soil microbes, soil properties, plant growth and various plant pathogens and diseases. Si-NPs and Si are reported to change the microbial colonies and biomass, could influence rhizospheric microbes and biomass content and are able to improve soil fertility.

... read more

Topics: Soil fertility (54%), Rhizosphere (52%)

3 Citations


Open accessJournal ArticleDOI: 10.1016/J.JCLEPRO.2021.128451
Abstract: The existing finite natural resources have witnessed unsustainable usage in the past few years, especially for food production, with accompanying environmental devastation and ecosystem damage. Regrettably, the global population and consumption demands are increasing ceaselessly, leading to the need for more resources for food production, which could potentially aggravate the sustainability and ecosystem degradation issues, while stimulating drastic climate change. Meanwhile, the unexpected emergence of the COVID-19 pandemic and some implemented measures to combat its spread disrupted agricultural activities and the food supply chain, which also led to a reduction in ecosystem carbonization. This study sets out to explore policy framework and selected feasible actions that are being adopted during the COVID-19 pandemic, which could potentially reduce the emissions even after the pandemic to promote a resilient and sustainable agri-food system. In this study, we reviewed 27 articles that focus on the current state of the agri-food system in light of the COVID-19 pandemic and its impact on the decarbonization of the agroecosystem. This review has taken the form of a systematic methodology in analyzing the adoption and implementation of various measures to mitigate the spread of COVID-19 on the impact of the agri-food system and reduction in ecosystem degradation. Up to 0.3 Mt of CO 2 reduction from the agri-food system alone was reportedly achieved during the first 6 months of the pandemic in 23 European countries. The various adopted measures indicate that the circular economy approach is a panacea to achieve the needed sustainability in the agri-food system. Also, it dictates a need for a paradigm change towards improvement on localized food production that promotes sustainable production and consumption. • The recent emergence of the agro-food system nexus as impacted by COVID-19 is reviewed. • Feasible adoption of COVID-19 measures for agroecosystem decarbonization is explored. • The gaps and constraints in the adoption of the CE approach to the agro-food systems were uncovered. • Circular economy in agroecosystems a panacea to sustainable agri-food system. [ABSTRACT FROM AUTHOR] Copyright of Journal of Cleaner Production is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

... read more

Topics: Sustainability (57%), Food systems (54%), Cleaner production (50%) ... read more

3 Citations


Open accessJournal ArticleDOI: 10.3389/FPLS.2021.707256
Juan Cao1, Baoyou Liu2, Baoyou Liu1, Xinning Xu1  +4 moreInstitutions (2)
Abstract: Endophytic fungi play an important role in plant survival and reproduction, but the role of their metabolites in plant growth and immunity, as well as in crop quality formation, is poorly understood. Zhinengcong (ZNC) is a crude ethanol extract from the endophytic fungus Paecilomyces variotii, and previous studies have shown that it can improve the growth and immunity in Arabidopsis thaliana. The aim of the study was to reveal the trade-off balance between plant growth and immunity by evaluating the mechanisms of ZNC on potato growth, yield, and priming immunity against the oomycete Phytophthora infestans indoors and in the field. ZNC maintained a good balance between plant growth and resistance against P. infestans with high activity. It induced the reactive oxygen species (ROS) production, promoted plant growth, yield and quality parameters, enhanced the expression of indoleacetic acid (IAA) related genes, and increased the absorption of nitrogen from the soil. Moreover, the plant endophytic fungus extract ZNC stimulated the pathogen-associated molecular pattern (PAMP) triggered immunity (PTI) pathway and contributed to the ZNC-mediated defense response. Two years of field trials have shown that irrigation with ZNC at one of two optimal concentrations of 1 or 10ng/ml could significantly increase the output by 18.83% or more. The quality of potato tubers was also greatly improved, in which the contents of vitamin C, protein, and starch were significantly increased, especially the sugar content was increased by 125%. Spray application of ZNC onto potato plants significantly reduced the occurrence of potato blight disease with 66.49% of control efficacy at 200ng/ml and increased the potato yield by 66.68% or more in the field. In summary, plant endophytic fungus extract ZNC promoted potato immunity, yield, and quality and presented excellent potential in agricultural applications.

... read more


References
  More

109 results found


Journal ArticleDOI: 10.1016/J.PLANTSCI.2010.04.012
Remya Nair1, Saino Hanna Varghese1, Baiju G. Nair1, Toru Maekawa1  +2 moreInstitutions (1)
01 Sep 2010-Plant Science
Abstract: The successful application of various nanoplatforms in medicine under in vitro conditions has generated some interest in agri-nanotechnology. This technology holds the promise of controlled release of agrochemicals and site targeted delivery of various macromolecules needed for improved plant disease resistance, efficient nutrient utilization and enhanced plant growth. Processes such as nanoencapsulation show the benefit of more efficient use and safer handling of pesticides with less exposure to the environment that guarantees ecoprotection. The uptake efficiency and effects of various nanoparticles on the growth and metabolic functions vary differently among plants. Nanoparticle mediated plant transformation has the potential for genetic modification of plants for further improvement. Specifically, application of nanoparticle technology in plant pathology targets specific agricultural problems in plant-pathogen interactions and provide new ways for crop protection. Herein we reviewed the delivery of nanoparticulate materials to plants and their ultimate effects which could provide some insights for the safe use of this novel technology for the improvement of crops.

... read more

993 Citations


Open accessJournal ArticleDOI: 10.1186/S12951-017-0308-Z
Abstract: As the field of nanomedicine emerges, there is a lag in research surrounding the topic of nanoparticle (NP) toxicity, particularly concerned with mechanisms of action. The continuous emergence of bacterial resistance has challenged the research community to develop novel antibiotic agents. Metal NPs are among the most promising of these because show strong antibacterial activity. This review summarizes and discusses proposed mechanisms of antibacterial action of different metal NPs. These mechanisms of bacterial killing include the production of reactive oxygen species, cation release, biomolecule damages, ATP depletion, and membrane interaction. Finally, a comprehensive analysis of the effects of NPs on the regulation of genes and proteins (transcriptomic and proteomic) profiles is discussed.

... read more

681 Citations


Journal ArticleDOI: 10.1385/BTER:104:1:083
Lei Zheng1, Fashui Hong1, Shipeng Lu1, Chao Liu1Institutions (1)
Abstract: The effects of nano-TiO2 (rutile) and non-nano-TiO2 on the germination and growth of naturally aged spinach seeds were studied by measuring the germination rate and the germination and vigor indexes of aged spinach seeds. An increase of these factors was observed at 0.25–4‰ nano-TiO2 treatment. During the growth stage, the plant dry weight was increased, as was the chlorophyll formation, the ribulosebisphosphate carboxylase/oxygenase activity, and the photosynthetic rate. The best results were found at 2.5‰ nano-TiO2. The effects of non-nano-TiO2 are not significant. It is shown that the physiological effects are related to the nanometer-size particles, but the mechanism by which nano-TiO2 improves the growth of spinach seeds still needs further study.

... read more

Topics: Spinach (59%), Germination (53%)

677 Citations


Open accessJournal ArticleDOI: 10.1016/J.MICRES.2010.03.003
Lili He1, Yang Liu1, Azlin Mustapha1, Mengshi Lin1Institutions (1)
Abstract: Antifungal activities of zinc oxide nanoparticles (ZnO NPs) and their mode of action against two postharvest pathogenic fungi (Botrytis cinerea and Penicillium expansum) were investigated in this study. ZnO NPs with sizes of 70 ± 15 nm and concentrations of 0, 3, 6 and 12 mmol l(-1) were used. Traditional microbiological plating, scanning electron microscopy (SEM), and Raman spectroscopy were used to study antifungal activities of ZnO NPs and to characterize the changes in morphology and cellular compositions of fungal hyphae treated with ZnO NPs. Results show that ZnO NPs at concentrations greater than 3 mmol l(-1) can significantly inhibit the growth of B. cinerea and P. expansum. P. expansum was more sensitive to the treatment with ZnO NPs than B. cinerea. SEM images and Raman spectra indicate two different antifungal activities of ZnO NPs against B. cinerea and P. expansum. ZnO NPs inhibited the growth of B. cinerea by affecting cellular functions, which caused deformation in fungal hyphae. In comparison, ZnO NPs prevented the development of conidiophores and conidia of P. expansum, which eventually led to the death of fungal hyphae. These results suggest that ZnO NPs could be used as an effective fungicide in agricultural and food safety applications.

... read more

Topics: Penicillium expansum (61%), Botrytis cinerea (53%)

567 Citations


Journal ArticleDOI: 10.1080/01904167.2012.663443
T. N. V. K. V. Prasad1, P. Sudhakar1, Y. Sreenivasulu1, P. Latha1  +5 moreInstitutions (2)
Abstract: An investigation was initiated to examine the effects of nanoscale zinc oxide particles on plant growth and development. In view of the widespread cultivation of peanut in India and in other parts of the globe and in view of the potential influence of zinc on its growth, this plant was chosen as the model system. Peanut seeds were separately treated with different concentrations of nanoscale zinc oxide (ZnO) and chelated bulk zinc sulfate (ZnSO4) suspensions (a common zinc supplement), respectively and the effect this treatment had on seed germination, seedling vigor, plant growth, flowering, chlorophyll content, pod yield and root growth were studied. Treatment of nanoscale ZnO (25 nm mean particle size) at 1000 ppm concentration promoted both seed germination and seedling vigor and in turn showed early establishment in soil manifested by early flowering and higher leaf chlorophyll content. These particles proved effective in increasing stem and root growth. Pod yield per plant was 34% higher compared to...

... read more

Topics: Germination (55%), Zinc (55%), Seedling (55%)

552 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20217
Network Information