scispace - formally typeset
Search or ask a question
Journal ArticleDOI

All-inorganic perovskite quantum dots as light-harvesting, interfacial, and light-converting layers toward solar cells

02 Jun 2021-Journal of Materials Chemistry (Royal Society of Chemistry (RSC))-Vol. 9, Iss: 35, pp 18947-18973
TL;DR: In this article, the authors focus on the latest development of all-inorganic perovskite quantum dots (AIPQDSCs) and analyze the current bottlenecks they are facing.
Abstract: Solution-processed colloidal lead halide perovskite quantum dots (QDs) are considered one of the promising candidates for next-generation photovoltaics (PVs) due to the excellent optoelectronic properties and low-cost synthetic process. In particular, all-inorganic perovskite (AIP) QDs exhibit better prospects due to their better stability. Although remarkable breakthroughs have been made in bulk perovskite solar cells (SCs), the AIP QD-based SCs (AIPQDSCs) are still on their way to catch up. A lot of reports have summarized the development of perovskite SCs, but few have focused on AIPQDSCs. In this review, we focus on the latest development of AIPQDSCs, and analyze the current bottlenecks they are facing. Also, various optimization means have been discussed to improve the performance of AIPQDSCs from two perspectives of QD materials and device structure, including compositional regulation, surface engineering, interface engineering, and optimization of the carrier transport layer. In addition, AIP QDs as converter for SCs are also presented. Since the stability of perovskite SCs is currently the most pressing issue, the device stability is also highlighted. In the end, a brief summary and perspectives are presented to look forward to the future development of AIPQDSCs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article , a gas sensor based on the composites of CsPbBr3 quantum dots (QDs) and ZnO microballs (MBs) was demonstrated for NO2 detection at room temperature.
Abstract: Nowadays, gas sensors with high response and short response/recovery time at room temperature (RT) are of great interest to researchers. This work demonstrated a gas sensor based on the composites of CsPbBr3 quantum dots (QDs) and ZnO microballs (MBs) for NO2 detection at room temperature. Compared with pure ZnO MBs, the composites decorated with 1.0 wt% QDs showed the optimal sensitivity under the 520 nm light activation. The response of 1.0 wt% QDs-ZnO sensor to 5 ppm NO2 was about 53, and the response/recovery time were about 63 s and 40 s, respectively. The sensor also showed good repeatability during four cycles and superior selectivity than other gases such as CO, NH3, and acetone. The addition of QDs can realize the absorption of visible light by the sensor and improve the utilization of light energy. Under the light excitation, the conductivity of the composites is significantly increased and the activity of oxygen species on the surface is also improved, which is conducive to the adsorption/desorption of gas molecules.

14 citations

Journal ArticleDOI
TL;DR: In this article , a review of PQD solar cells and photocatalytic conversion is presented, highlighting that the improvement of the efficiency from below 10% to beyond 16% in a matter of a few years has turned them into promising candidates for future SC applications.
Abstract: Lead halide-based perovskite quantum dots (PQDs) have recently emerged as an important class of nanocrystal (NC) materials for optoelectronic and photoelectrochemical applications. Thanks to their intriguing features including tunable band gap, narrow emission, high charge carrier mobility, remarkable light-absorbing factors, and long charge diffusion length, there has been a surge in research on lead halide-based PQDs and their applications. In this review, we showcase the fundamentals of PQDs and two principal applications including PQD solar cells (PQDSCs) and photocatalytic conversion. First, a thorough discussion on PQDSCs, their structure, surface treatment, and interface engineering along with their recent progress are presented. It is highlighted that the improvement of the efficiency of PQDSCs from below 10% to beyond 16% in a matter of a few years has turned them into promising candidates for future SC applications. Subsequently, the application of PQDs in photocatalytic reactions such as hydrogen production, CO2 reduction, and organic compounds’ degradation is summarized. Not to mention that, despite the remarkable properties of PQDs in SCs and photocatalysis, the inferior stability of PV devices based thereon under operation as well as their poor tolerance under air, water, light, and heat impede their widespread application. For this, the practical efforts and possible solutions are extensively addressed. Finally, an outlook is provided, addressing further merits, and demerits of each application as well as prospective opportunities.

8 citations

Journal ArticleDOI
TL;DR: In this article , a review of surface and lattice engineering in CsPbI3-based perovskites is presented, highlighting the superiority of CspbII3 over other halide systems, stability, the factors leading to their phase transformations, and electronic band structure along with the important property of the defect tolerance nature.
Abstract: Among perovskites, the research on cesium lead iodides (CsPbI3) has attracted a large research community, owing to their all-inorganic nature and promising solar cell performance. Typically, the CsPbI3 solar cell devices are prepared at various heterojunctions, and working at fluctuating temperatures raises questions on the material stability-related performance of such devices. The fundamental studies reveal that their poor stability is due to a lower side deviation from Goldschmidt’s tolerance factor, causing weak chemical interactions within the crystal lattice. In the case of organic–inorganic hybrid perovskites, where their stability is related to the inherent chemical nature of the organic cations, which cannot be manipulated to improve the stability drastically whereas the stability of CsPbI3 is related to surface and lattice engineering. Thus, the challenges posed by CsPbI3 could be overcome by engineering the surface and inside the CsPbI3 crystal lattice. A few solutions have been proposed, including controlled crystal sizes, surface modifications, and lattice engineering. Various research groups have been working on these aspects and had accumulated a rich understanding of these materials. In this review, at first, we survey the fundamental aspects of CsPbI3 polymorphs structure, highlighting the superiority of CsPbI3 over other halide systems, stability, the factors (temperature, polarity, and size influence) leading to their phase transformations, and electronic band structure along with the important property of the defect tolerance nature. Fortunately, the factors stabilizing the most effective phases are achieved through a size reduction and the efficient surface passivation on the delicate CsPbI3 nanocrystal surfaces. In the following section, we have provided the up-to-date surface passivating methods to suppress the non-radiative process for near-unity photoluminescence quantum yield, while maintaining their optically active phases, especially through molecular links (ligands, polymers, zwitterions, polymers) and inorganic halides. We have also provided recent advances to the efficient synthetic protocols for optically active CsPbI3 NC phases to use readily for solar cell applications. The nanocrystal purification techniques are challenging and had a significant effect on the device performances. In part, we summarized the CsPbI3-related solar cell device performances with respect to the device fabrication methods. At the end, we provide a brief outlook on the view of surface and lattice engineering in CsPbI3 NCs for advancing the enhanced stability which is crucial for superior optical and light applications.

6 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed a new QDs protection strategy by introducing short-chain silica precursors onto the QDs surface, so that a dense silica passivation layer could be formed onto QDs nanoparticles.
Abstract: Quantum dots (QDs) are facing significant photoluminescence degradation in moisture environment. In QDs-silicone composites, the poor water resistance of silicone matrix makes it easy for water and oxygen molecules to erode QDs. To tackle this issue, we proposed a new QDs protection strategy by introducing short-chain silica precursors onto the QDs’ surface, so that a dense silica passivation layer could be formed onto the QDs nanoparticles. Sol-gel method based on 3-aminopropyl triethoxysilane (APTES), 3-mercaptopropyl trimethoxysilane (MPTMS), and 3-mercaptopropyl triethoxysilane (MPTES) were adopted to prepare the uniform and crack-free QDs-silica glass (QD-glass). Because of the crosslinking of short-chain precursors, the formed silica glass possesses 38.6% smaller pore width and 68.6% lower pore volume than silicone, indicating its denser cross-linked network surrounding QDs. After 360 h water immersion, the QDs-glass demonstrated a 6% enhancement in red-light peak intensity, and maintained a stable full width at half maximum (FWHM) and peak wavelength, proving its excellent water-resistant ability. However, the conventional QDs-silicone composites not only showed a decrease of 75.3% in red-light peak intensity, but also a broadened FWHM and a redshifted peak wavelength after water immersion. QDs-glass also showed superior photostability after 132 h exposure to blue light. Red-light peak intensity of QDs-glass remained 87.3% of the initial while that of QDs-silicone decreased to 19.8%. And the intensity of QDs-glass dropped to 62.3% of that under 20 °C after thermal treatment of 160 °C. Besides, under increasing driving currents, the light conversion efficiency drop of QDs-glass is only one fifth that of QDs-silicone. Based on the QDs-glass, the white light-emitting diodes was achieved with a high luminous efficiency of 126.5 lm W−1 and a high color rendering index of 95.4. Thus, the newly proposed QD-glass has great significance in guaranteeing the working reliability of QDs-converted devices against moisture and high-power environment.

2 citations

Journal ArticleDOI
26 Jan 2023-Coatings
TL;DR: In this paper , a review systematically summarizes additive engineering, solvent engineering, and interface engineering methods to promote the thin film property for a high power conversion efficiency (PCE) in recent years.
Abstract: All-inorganic CsPbX3 perovskite material not only has the benefits of advanced light absorption coefficient, long carrier lifetime, and simple preparation process of organic–inorganic perovskite materials but it also maintains excellent stability under the erosion of damp heat. Stability is the premise of its industrialization, so all-inorganic perovskite is undoubtedly a very competitive direction for the development of perovskite materials. However, there are still many defects in the all-inorganic perovskite thin films, and it is difficult to obtain high power conversion efficiency (PCE). This review systematically summarizes additive engineering, solvent engineering, and interface engineering methods to promote the thin film property for a high PCE in recent years.

2 citations

References
More filters
Journal ArticleDOI
18 Oct 2013-Science
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

8,199 citations

Journal Article
TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

6,454 citations

Journal ArticleDOI
TL;DR: The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.
Abstract: Metal halides perovskites, such as hybrid organic–inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4–15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410–700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12–42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiativ...

6,170 citations

Journal ArticleDOI
TL;DR: In this article, the effect of replacing the methylammonium cation in this perovskite was explored, and it was shown that with the slightly larger formamidinium lead trihalide cation, one can synthesise a peroviscite with a bandgap tunable between 1.48 and 2.23 eV.
Abstract: Perovskite-based solar cells have attracted significant recent interest, with power conversion efficiencies in excess of 15% already superceding a number of established thin-film solar cell technologies. Most work has focused on a methylammonium lead trihalide perovskites, with a bandgaps of ∼1.55 eV and greater. Here, we explore the effect of replacing the methylammonium cation in this perovskite, and show that with the slightly larger formamidinium cation, we can synthesise formamidinium lead trihalide perovskites with a bandgap tunable between 1.48 and 2.23 eV. We take the 1.48 eV-bandgap perovskite as most suited for single junction solar cells, and demonstrate long-range electron and hole diffusion lengths in this material, making it suitable for planar heterojunction solar cells. We fabricate such devices, and due to the reduced bandgap we achieve high short-circuit currents of >23 mA cm−2, resulting in power conversion efficiencies of up to 14.2%, the highest efficiency yet for solution processed planar heterojunction perovskite solar cells. Formamidinium lead triiodide is hence promising as a new candidate for this class of solar cell.

3,220 citations

Journal ArticleDOI
TL;DR: Perovskite QD-sensitized 3.6 μm-thick TiO(2) film shows maximum external quantum efficiency (EQE) of 78.6% at 530 nm and solar-to-electrical conversion efficiency of 6.54% at AM 1.5G 1 sun intensity (100 mW cm(-2)), which is by far the highest efficiency among the reported inorganic quantum dot sensitizers.
Abstract: Highly efficient quantum-dot-sensitized solar cell is fabricated using ca. 2–3 nm sized perovskite (CH3NH3)PbI3 nanocrystal. Spin-coating of the equimolar mixture of CH3NH3I and PbI2 in γ-butyrolactone solution (perovskite precursor solution) leads to (CH3NH3)PbI3 quantum dots (QDs) on nanocrystalline TiO2 surface. By electrochemical junction with iodide/iodine based redox electrolyte, perovskite QD-sensitized 3.6 μm-thick TiO2 film shows maximum external quantum efficiency (EQE) of 78.6% at 530 nm and solar-to-electrical conversion efficiency of 6.54% at AM 1.5G 1 sun intensity (100 mW cm−2), which is by far the highest efficiency among the reported inorganic quantum dot sensitizers.

2,781 citations