scispace - formally typeset
Search or ask a question
Journal ArticleDOI

All-optical control of light on a silicon chip

28 Oct 2004-Nature (Nature Publishing Group)-Vol. 431, Iss: 7012, pp 1081-1084
TL;DR: The experimental demonstration of fast all-optical switching on silicon using highly light-confining structures to enhance the sensitivity of light to small changes in refractive index and confirm the recent theoretical prediction of efficient optical switching in silicon using resonant structures.
Abstract: Photonic circuits, in which beams of light redirect the flow of other beams of light, are a long-standing goal for developing highly integrated optical communication components1,2,3. Furthermore, it is highly desirable to use silicon—the dominant material in the microelectronic industry—as the platform for such circuits. Photonic structures that bend, split, couple and filter light have recently been demonstrated in silicon4,5, but the flow of light in these structures is predetermined and cannot be readily modulated during operation. All-optical switches and modulators have been demonstrated with III–V compound semiconductors6,7, but achieving the same in silicon is challenging owing to its relatively weak nonlinear optical properties. Indeed, all-optical switching in silicon has only been achieved by using extremely high powers8,9,10,11,12,13,14,15 in large or non-planar structures, where the modulated light is propagating out-of-plane. Such high powers, large dimensions and non-planar geometries are inappropriate for effective on-chip integration. Here we present the experimental demonstration of fast all-optical switching on silicon using highly light-confining structures to enhance the sensitivity of light to small changes in refractive index. The transmission of the structure can be modulated by up to 94% in less than 500 ps using light pulses with energies as low as 25 pJ. These results confirm the recent theoretical prediction16 of efficient optical switching in silicon using resonant structures.
Citations
More filters
Journal ArticleDOI
19 May 2005-Nature
TL;DR: Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures, and here a high-speed electro-optical modulator in compact silicon structures is experimentally demonstrated.
Abstract: Metal interconnections are expected to become the limiting factor for the performance of electronic systems as transistors continue to shrink in size. Replacing them by optical interconnections, at different levels ranging from rack-to-rack down to chip-to-chip and intra-chip interconnections, could provide the low power dissipation, low latencies and high bandwidths that are needed. The implementation of optical interconnections relies on the development of micro-optical devices that are integrated with the microelectronics on chips. Recent demonstrations of silicon low-loss waveguides, light emitters, amplifiers and lasers approach this goal, but a small silicon electro-optic modulator with a size small enough for chip-scale integration has not yet been demonstrated. Here we experimentally demonstrate a high-speed electro-optical modulator in compact silicon structures. The modulator is based on a resonant light-confining structure that enhances the sensitivity of light to small changes in refractive index of the silicon and also enables high-speed operation. The modulator is 12 micrometres in diameter, three orders of magnitude smaller than previously demonstrated. Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures.

2,336 citations

Journal ArticleDOI
TL;DR: In this article, a hybrid optical waveguide is proposed to confine surface plasmon polaritons over large distances using a dielectric nanowire separated from a metal surface by a nanoscale gap.
Abstract: The emerging field of nanophotonics1 addresses the critical challenge of manipulating light on scales much smaller than the wavelength. However, very few feasible practical approaches exist at present. Surface plasmon polaritons2,3 are among the most promising candidates for subwavelength optical confinement3,4,5,6,7,8,9,10. However, studies of long-range surface plasmon polaritons have only demonstrated optical confinement comparable to that of conventional dielectric waveguides, because of practical issues including optical losses and stringent fabrication demands3,11,12,13. Here, we propose a new approach that integrates dielectric waveguiding with plasmonics. The hybrid optical waveguide consists of a dielectric nanowire separated from a metal surface by a nanoscale dielectric gap. The coupling between the plasmonic and waveguide modes across the gap enables ‘capacitor-like’ energy storage that allows effective subwavelength transmission in non-metallic regions. In this way, surface plasmon polaritons can travel over large distances (40–150 µm) with strong mode confinement (ranging from λ2/400 to λ2/40). This approach is fully compatible with semiconductor fabrication techniques and could lead to truly nanoscale semiconductor-based plasmonics and photonics. Xiang Zhang and colleagues from the University of California, Berkeley, propose a new approach for confining light on scales much smaller than the wavelength of light. Using hybrid waveguides that incorporate dielectric and plasmonic waveguiding techniques, they are able to confine surface plasmon polaritons very strongly over large distances. The advance could lead to truly nanoscale plasmonics and photonics.

1,905 citations

Journal Article
TL;DR: The silicon chip has been the mainstay of the electronics industry for the last 40 years and has revolutionized the way the world operates as mentioned in this paper, however, any optical solution must be based on low-cost technologies if it is to be applied to the mass market.
Abstract: The silicon chip has been the mainstay of the electronics industry for the last 40 years and has revolutionized the way the world operates. Today, a silicon chip the size of a fingernail contains nearly 1 billion transistors and has the computing power that only a decade ago would take up an entire room of servers. As the relentless pursuit of Moore's law continues, and Internet-based communication continues to grow, the bandwidth demands needed to feed these devices will continue to increase and push the limits of copper-based signaling technologies. These signaling limitations will necessitate optical-based solutions. However, any optical solution must be based on low-cost technologies if it is to be applied to the mass market. Silicon photonics, mainly based on SOI technology, has recently attracted a great deal of attention. Recent advances and breakthroughs in silicon photonic device performance have shown that silicon can be considered a material onto which one can build optical devices. While significant efforts are needed to improve device performance and commercialize these technologies, progress is moving at a rapid rate. More research in the area of integration, both photonic and electronic, is needed. The future is looking bright. Silicon photonics could provide low-cost opto-electronic solutions for applications ranging from telecommunications down to chip-to-chip interconnects, as well as emerging areas such as optical sensing technology and biomedical applications. The ability to utilize existing CMOS infrastructure and manufacture these silicon photonic devices in the same facilities that today produce electronics could enable low-cost optical devices, and in the future, revolutionize optical communications

1,479 citations

Journal ArticleDOI
TL;DR: An electrically pumped AlGaInAs-silicon evanescent laser architecture where the laser cavity is defined solely by the silicon waveguide and needs no critical alignment to the III-V active material during fabrication via wafer bonding is reported.
Abstract: An electrically pumped light source on silicon is a key element needed for photonic integrated circuits on silicon. Here we report an electrically pumped AlGaInAs-silicon evanescent laser architecture where the laser cavity is defined solely by the silicon waveguide and needs no critical alignment to the III-V active material during fabrication via wafer bonding. This laser runs continuous-wave (c.w.) with a threshold of 65 mA, a maximum output power of 1.8 mW with a differential quantum efficiency of 12.7 % and a maximum operating temperature of 40 degrees C. This approach allows for 100's of lasers to be fabricated in one bonding step, making it suitable for high volume, low-cost, integration. By varying the silicon waveguide dimensions and the composition of the III-V layer, this architecture can be extended to fabricate other active devices on silicon such as optical amplifiers, modulators and photo-detectors.

1,257 citations

Journal ArticleDOI
TL;DR: Some of the exciting developments so far in miniaturized optofluidic platforms bring fluid and light together and exploit their microscale interaction for a large variety of applications are overviewed.
Abstract: The realization of miniaturized optofluidic platforms offers potential for achieving more functional and more compact devices. Such integrated systems bring fluid and light together and exploit their microscale interaction for a large variety of applications. The high sensitivity of compact microphotonic devices can generate effective microfluidic sensors, with integration capabilities. By turning the technology around, the exploitation of fluid properties holds the promise of highly flexible, tunable or reconfigurable microphotonic devices. We overview some of the exciting developments so far.

946 citations


Cites background from "All-optical control of light on a s..."

  • ...5–1) is much higher than those traditionally offered by electro–opti...

    [...]

References
More filters
Journal ArticleDOI
15 Jun 1995-Nature
TL;DR: In this article, the authors examined the possibility that this effect is related to dynamical two-dimensional spin correlations, incommensurate with the crystal lattice, that have been observed in La2-SrxCuO4 by neutron scattering.
Abstract: ONE of the long-standing mysteries associated with the high-temperature copper oxide superconductors concerns the anomalous suppression1 of superconductivity in La2-xBaxCuO4 (and certain related compounds) when the hole concentration x is near . Here we examine the possibility that this effect is related to dynamical two-dimensional spin correlations, incommensurate with the crystal lattice, that have been observed in La2-xSrxCuO4 by neutron scattering2–4. A possible explanation for the incommensurability involves a coupled, dynamical modulation of spin and charge in which antiferromagnetic 'stripes' of copper spins are separated by periodically spaced domain walls to which the holes segregate5–9. An ordered stripe phase of this type has recently been observed in hole-doped La2NiO4 (refs 10–12). We present evidence from neutron diffraction that in the copper oxide material La1.6-xNd0.4SrxCuO4, with x = 0.12, a static analogue of the dynamical stripe phase is present, and is associated with an anomalous suppression of superconductivity13,14. Our results thus provide an explanation of the ' ' conundrum, and also support the suggestion15 that spatial modulations of spin and charge density are related to superconductivity in the copper oxides.

2,449 citations

Journal ArticleDOI
12 Feb 2004-Nature
TL;DR: An approach based on a metal–oxide–semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation is described and an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz is demonstrated.
Abstract: Silicon has long been the optimal material for electronics, but it is only relatively recently that it has been considered as a material option for photonics1. One of the key limitations for using silicon as a photonic material has been the relatively low speed of silicon optical modulators compared to those fabricated from III–V semiconductor compounds2,3,4,5,6 and/or electro-optic materials such as lithium niobate7,8,9. To date, the fastest silicon-waveguide-based optical modulator that has been demonstrated experimentally has a modulation frequency of only ∼20 MHz (refs 10, 11), although it has been predicted theoretically that a ∼1-GHz modulation frequency might be achievable in some device structures12,13. Here we describe an approach based on a metal–oxide–semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation: we demonstrate an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz. As this technology is compatible with conventional complementary MOS (CMOS) processing, monolithic integration of the silicon modulator with advanced electronics on a single silicon substrate becomes possible.

1,612 citations

Journal ArticleDOI
02 Feb 1996-Science
TL;DR: In this article, the transition from the quasi-long-range order in a chain of antiferromagnetically coupled S = 1/2 spins to the true longrange order that occurs in a plane is not at all smooth.
Abstract: To make the transition from the quasi-long-range order in a chain of antiferromagnetically coupled S = 1/2 spins to the true long-range order that occurs in a plane, one can assemble chains to make ladders of increasing width. Surprisingly, this crossover between one and two dimensions is not at all smooth. Ladders with an even number of legs have purely short-range magnetic order and a finite energy gap to all magnetic excitations. Predictions of this ground state have now been verified experimentally. Holes doped into these ladders are predicted to pair and possibly superconduct.

1,176 citations

Journal ArticleDOI
Yurii A. Vlasov1, Sharee J. McNab1
TL;DR: The fabrication and accurate measurement of propagation and bending losses in single-mode silicon waveguides with submicron dimensions fabricated on silicon-on-insulator wafers with record low numbers can be used as a benchmark for further development of silicon microphotonic components and circuits.
Abstract: We report the fabrication and accurate measurement of propagation and bending losses in single-mode silicon waveguides with submicron dimensions fabricated on silicon-on-insulator wafers. Owing to the small sidewall surface roughness achieved by processing on a standard 200mm CMOS fabrication line, minimal propagation losses of 3.6+/-0.1dB/cm for the TE polarization were measured at the telecommunications wavelength of 1.5microm. Losses per 90 masculine bend are measured to be 0.086+/-0.005dB for a bending radius of 1microm and as low as 0.013+/-0.005dB for a bend radius of 2microm. These record low numbers can be used as a benchmark for further development of silicon microphotonic components and circuits.

999 citations


"All-optical control of light on a s..." refers result in this paper

  • ...5 dB due to the high index contrast nature of the Si/SiO 2 platform; this is supported by recent experimental result...

    [...]

Journal ArticleDOI
TL;DR: It is shown that the micrometer-long silicon-on-insulator-based nanotaper coupler is able to efficiently convert both the mode field profile and the effective index, with a total length as short as 40 microm, during compact mode conversion between a fiber and a submicrometer waveguide.
Abstract: We propose and demonstrate an efficient coupler for compact mode conversion between a fiber and a submicrometer waveguide. The coupler is composed of high-index-contrast materials and is based on a short taper with a nanometer-sized tip. We show that the micrometer-long silicon-on-insulator-based nanotaper coupler is able to efficiently convert both the mode field profile and the effective index, with a total length as short as 40 microm. We measure an enhancement of the coupling efficiency between an optical fiber and a waveguide by 1 order of magnitude due to the coupler.

994 citations


"All-optical control of light on a s..." refers methods in this paper

  • ...Figure 1 shows a silicon-on-insulator (SOI) ring resonator with 10 µm diameter, patterned by electron-beam lithography and subsequently etched by inductively-coupled-plasma reactive ion etchin...

    [...]