scispace - formally typeset
Open accessJournal ArticleDOI: 10.1080/00207454.2020.1738432

Alzheimer's disease and gastrointestinal microbiota; impact of Helicobacter pylori infection involvement.

04 Mar 2021-International Journal of Neuroscience (Int J Neurosci)-Vol. 131, Iss: 3, pp 289-301
Abstract: Background: Alzheimer disease (AD) is a leading cause of global burden with great impact on societies. Although research is working intensively on promising therapy, the problem remains up-to-date. Among the various proposed hypotheses regarding causality and therapy, emerging evidence supports the hypothesis that gastrointestinal microbiota through the so-called 'gut-brain axis' interacts with immune system and brain and shape the balance between homeostasis and disease; the involvement of gastrointestinal microbiota in the pathophysiology of AD is less defined, even though the role of 'gut-brain axis' has been well verified for other neurodegenerative conditions.Methods: We performed a systematic review of PubMed/MEDLINE database from 1st January 1990 to 17th October 2018, to investigate the accessible literature regarding possible association between AD and gastrointestinal microbiota. Inclusion criteria were available full text in English language, original clinical papers implicating AD patients and any sort of gastrointestinal microbiota.Results: Through our query, an initial number of 241 papers has been identified. After removing duplicates and through an additional manual search, twenty-four papers met our inclusion criteria. The great majority of eligible publications supported a possible connection between AD and gastrointestinal microbiota. The most common investigated microorganism was Helicobacter pylori.Conclusion: Our own systematic review, showed a possible association between AD and gastrointestinal microbiota mainly including Helicobacter pylori, and thus further research is required for substantiation of causality as well as for the establishment of promising novel therapies.

... read more


12 results found

Journal ArticleDOI: 10.1111/HEL.12636
04 Sep 2019-Helicobacter
Abstract: In the last year, many studies have demonstrated a potential role of Helicobacter pylori in the pathogenic mechanisms of different extragastric diseases. While the role of H pylori in idiopathic thrombocytopenic purpura, idiopathic iron deficiency anemia, and vitamin B12 deficiency has already been demonstrated, there is growing evidence of other related conditions, especially cardiovascular, metabolic, and neurologic disorders, including neurodegenerative diseases. A summary of the results of the most relevant studies published over the last year on this attractive topic is presented in this review.

... read more

25 Citations

Open accessJournal ArticleDOI: 10.1016/J.BIOPHA.2020.110449
Abstract: Manganese (Mn) exposure has been reported to cause neurodegenerative disorders. β-Amyloid (Aβ) induced Tau pathology in an NLRP3-dependent manner is at the heart of Alzheimer's and Parkinson's diseases. The gut microbiota plays a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities. In this study, we found that Mn exposure increases Aβ1-40 and Tau production in brain, and causes hippocampal degeneration and necrosis. Meanwhile, Mn exposure can stimulate neurotoxicity by increasing inflammation either in peripheral blood and CNS. Importantly, we found that transplantation of gut microbiota from normal rats into Mn exposure rats reduced Aβ and Tau expression, and the cerebral expression of NLRP3 was downregulated, and the expression of neuroinflammatory factors was also downregulated. Therefore, improving the composition of gut microbiota in Mn exposure rats can attenuate neuroinflammation, which is considered as a novel therapeutic strategy for Mn exposure by remodelling the gut microbiota.

... read more

Topics: Neuroinflammation (54%), Gut flora (53%), Neurotoxicity (53%) ... show more

13 Citations

Journal ArticleDOI: 10.1016/J.BIOORG.2020.103915
Zili Lei1, Yanhong Yang2, Shaomin Liu1, Yuting Lei1  +6 moreInstitutions (2)
Abstract: In the present study, the effects of dihydroartemisinin (DHA) on inflammatory bowel diseases (IBD) mice model induced by dextran sulfate sodium (DSS) were determined. Hematoxylin and eosin staining was used to assess the intestines of mice treated with DSS and DHA. The expression of inflammatory factors and cell junction-associated genes was measured using reverse transcription-quantitative PCR (RT-qPCR) and Western blot. The effects of DSS and DHA on the gut microbiome were measured using 16S recombinant (r) DNA gene analysis. DHA could improve the diarrhea and bloody stool induced by DSS, and decrease the serum levels of TNF-α, IL-1β and IL-23 of the DSS group. DHA could notably reduce the infiltration of the inflammatory cells and significantly decrease the expression of TNF-α and IL-1β in the intestines of the DSS treated mice. The expression of cell junction-associated genes such as EpCAM and Claudins, were down-regulated in the DSS group, and DHA could recover the expression of these cell junction-associated genes. The 16S rDNA gene analysis demonstrated that Bacteroidetes and Verrucomicrobia decreased, while Firmicutes and Proteobacteria increased in the DSS group, and DHA could recover the abundance of these gut bacteria altered by DSS. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that DHA could partly recover the pathways altered by DSS. DHA could obviously ameliorate the symptoms of IBD induced by DSS by regulation of the expression of inflammation and cell junction-associated genes and gut microbiota, suggesting its potential for the treatment of IBD.

... read more

6 Citations

Open accessJournal ArticleDOI: 10.3390/PH14050458
Abstract: Alzheimer’s disease (AD; progressive neurodegenerative disorder) is associated with cognitive and functional impairment with accompanying neuropsychiatric symptoms. The available pharmacological treatment is of a symptomatic nature and, as such, it does not modify the cause of AD. The currently used drugs to enhance cognition include an N-methyl-d-aspartate receptor antagonist (memantine) and cholinesterase inhibitors. The PUBMED, Medical Subject Heading and Clinical Trials databases were used for searching relevant data. Novel treatments are focused on already approved drugs for other conditions and also searching for innovative drugs encompassing investigational compounds. Among the approved drugs, we investigated, are intranasal insulin (and other antidiabetic drugs: liraglitude, pioglitazone and metformin), bexarotene (an anti-cancer drug and a retinoid X receptor agonist) or antidepressant drugs (citalopram, escitalopram, sertraline, mirtazapine). The latter, especially when combined with antipsychotics (for instance quetiapine or risperidone), were shown to reduce neuropsychiatric symptoms in AD patients. The former enhanced cognition. Procognitive effects may be also expected with dietary antioxidative and anti-inflammatory supplements—curcumin, myricetin, and resveratrol. Considering a close relationship between brain ischemia and AD, they may also reduce post-brain ischemia neurodegeneration. An investigational compound, CN-105 (a lipoprotein E agonist), has a very good profile in AD preclinical studies, and its clinical trial for postoperative dementia is starting soon.

... read more

Topics: Escitalopram (52%), Memantine (52%), Dementia (51%) ... show more

5 Citations

Open accessJournal ArticleDOI: 10.1186/S13041-021-00765-Y
Peng Chen1, Chen Wang2, Yan-na Ren1, Zeng-jie Ye2  +2 moreInstitutions (2)
09 Mar 2021-Molecular Brain
Abstract: The aim of this study was to explore the relationships among gut microbiota disturbances and serum and spinal cord metabolic disorders in neuropathic pain. 16S rDNA amplicon sequencing and serum and spinal cord metabolomics were used to identify alterations in the microbiota and metabolite profiles in the sham rats and the chronic constriction injury (CCI) model rats. Correlations between the abundances of gut microbiota components at the genus level, the levels of serum metabolites, and pain-related behavioural parameters were analysed. Ingenuity pathway analysis (IPA) was applied to analyse the interaction networks of the differentially expressed serum metabolites. First, we found that the composition of the gut microbiota was different between rats with CCI-induced neuropathic pain and sham controls. At the genus level, the abundances of Helicobacter, Phascolarctobacterium, Christensenella, Blautia, Streptococcus, Rothia and Lactobacillus were significantly increased, whereas the abundances of Ignatzschineria, Butyricimonas, Escherichia, AF12, and Corynebacterium were significantly decreased. Additionally, 72 significantly differentially expressed serum metabolites and 17 significantly differentially expressed spinal cord metabolites were identified between the CCI rats and the sham rats. Finally, correlation analysis showed that changes in the gut microbiota was significantly correlated with changes in serum metabolite levels, suggesting that dysbiosis of the gut microbiota is an important factor in modulating metabolic disturbances in the context of neuropathic pain. In conclusion, our research provides a novel perspective on the potential roles of the gut microbiota and related metabolites in neuropathic pain.

... read more

Topics: Dysbiosis (56%), Gut flora (54%), Lactobacillus (51%)

4 Citations


70 results found

Open accessJournal ArticleDOI: 10.1371/JOURNAL.PMED.1000100
18 Aug 2009-PLOS Medicine
Abstract: Systematic reviews and meta-analyses are essential to summarize evidence relating to efficacy and safety of health care interventions accurately and reliably. The clarity and transparency of these reports, however, is not optimal. Poor reporting of systematic reviews diminishes their value to clinicians, policy makers, and other users. Since the development of the QUOROM (QUality Of Reporting Of Meta-analysis) Statement—a reporting guideline published in 1999—there have been several conceptual, methodological, and practical advances regarding the conduct and reporting of systematic reviews and meta-analyses. Also, reviews of published systematic reviews have found that key information about these studies is often poorly reported. Realizing these issues, an international group that included experienced authors and methodologists developed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) as an evolution of the original QUOROM guideline for systematic reviews and meta-analyses of evaluations of health care interventions. The PRISMA Statement consists of a 27-item checklist and a four-phase flow diagram. The checklist includes items deemed essential for transparent reporting of a systematic review. In this Explanation and Elaboration document, we explain the meaning and rationale for each checklist item. For each item, we include an example of good reporting and, where possible, references to relevant empirical studies and methodological literature. The PRISMA Statement, this document, and the associated Web site ( should be helpful resources to improve reporting of systematic reviews and meta-analyses.

... read more

Topics: Systematic review (62%), Meta-analysis (51%)

22,678 Citations

Open accessJournal ArticleDOI: 10.1161/01.STR.0000014421.15948.67
J C de la Torre1Institutions (1)
01 Apr 2002-Stroke
Abstract: Background— The main stumbling block in the clinical management and in the search for a cure of Alzheimer disease (AD) is that the cause of this disorder has remained uncertain until now. Summary of Review— Evidence that sporadic (nongenetic) AD is primarily a vascular rather than a neurodegenerative disorder is reviewed. This conclusion is based on the following evidence: (1) epidemiological studies showing that practically all risk factors for AD reported thus far have a vascular component that reduces cerebral perfusion; (2) risk factor association between AD and vascular dementia (VaD); (3) improvement of cerebral perfusion obtained from most pharmacotherapy used to reduce the symptoms or progression of AD; (4) detection of regional cerebral hypoperfusion with the use of neuroimaging techniques to preclinically identify AD candidates; (5) presence of regional brain microvascular abnormalities before cognitive and neurodegenerative changes; (6) common overlap of clinical AD and VaD cognitive symptoms; ...

... read more

Topics: Vascular dementia (56%), Dementia (56%), Alzheimer's disease (53%) ... show more

749 Citations

Open accessJournal ArticleDOI: 10.1016/J.NEUROBIOLAGING.2016.08.019
Abstract: The pathway leading from amyloid-β deposition to cognitive impairment is believed to be a cornerstone of the pathogenesis of Alzheimer's disease (AD). However, what drives amyloid buildup in sporadic nongenetic cases of AD is still unknown. AD brains feature an inflammatory reaction around amyloid plaques, and a specific subset of the gut microbiota (GMB) may promote brain inflammation. We investigated the possible role of the GMB in AD pathogenesis by studying the association of brain amyloidosis with (1) GMB taxa with pro- and anti-inflammatory activity; and (2) peripheral inflammation in cognitively impaired patients. We measured the stool abundance of selected bacterial GMB taxa (Escherichia/Shigella, Pseudomonas aeruginosa, Eubacterium rectale, Eubacterium hallii, Faecalibacterium prausnitzii, and Bacteroides fragilis) and the blood expression levels of cytokines (pro-inflammatory cytokines: CXCL2, CXCL10, interleukin [IL]-1β, IL-6, IL-18, IL-8, inflammasome complex (NLRP3), tumor necrosis factor-alpha [TNF-α]; anti-inflammatory cytokines: IL-4, IL-10, IL-13) in cognitively impaired patients with (n = 40, Amy+) and with no brain amyloidosis (n = 33, Amy-) and also in a group of controls (n = 10, no brain amyloidosis and no cognitive impairment). Amy+ patients showed higher levels of pro-inflammatory cytokines (IL-6, CXCL2, NLRP3, and IL-1β) compared with both controls and with Amy- patients. A reduction of the anti-inflammatory cytokine IL-10 was observed in Amy+ versus Amy-. Amy+ showed lower abundance of E. rectale and higher abundance of Escherichia/Shigella compared with both healthy controls (fold change, FC = -9.6, p < 0.001 and FC = +12.8, p < 0.001, respectively) and to Amy- (FC = -7.7, p < 0.001 and FC = +7.4, p = 0.003). A positive correlation was observed between pro-inflammatory cytokines IL-1β, NLRP3, and CXCL2 with abundance of the inflammatory bacteria taxon Escherichia/Shigella (rho = 0.60, p < 0.001; rho = 0.57, p < 0.001; and rho = 0.30, p = 0.007, respectively) and a negative correlation with the anti-inflammatory E. rectale (rho = -0.48, p < 0.001; rho = -0.25, p = 0.024; rho = -0.49, p < 0.001). Our data indicate that an increase in the abundance of a pro-inflammatory GMB taxon, Escherichia/Shigella, and a reduction in the abundance of an anti-inflammatory taxon, E. rectale, are possibly associated with a peripheral inflammatory state in patients with cognitive impairment and brain amyloidosis. A possible causal relation between GMB-related inflammation and amyloidosis deserves further investigation.

... read more

Topics: Inflammasome complex (52%), Amyloidosis (51%)

420 Citations

Open accessJournal ArticleDOI: 10.1038/NATURE17039
Michael Karin1, Hans Clevers2Institutions (2)
21 Jan 2016-Nature
Abstract: Inflammation underlies many chronic and degenerative diseases, but it also mitigates infections, clears damaged cells and initiates tissue repair. Many of the mechanisms that link inflammation to damage repair and regeneration in mammals are conserved in lower organisms, indicating that it is an evolutionarily important process. Recent insights have shed light on the cellular and molecular processes through which conventional inflammatory cytokines and Wnt factors control mammalian tissue repair and regeneration. This is particularly important for regeneration in the gastrointestinal system, especially for intestine and liver tissues in which aberrant and deregulated repair results in severe pathologies.

... read more

Topics: Regeneration (biology) (59%), Wound healing (51%), Inflammation (51%)

395 Citations

Journal ArticleDOI: 10.3233/JAD-161141
Chunmei Jiang1, Guangning Li2, Pengru Huang1, Zhou Liu1  +1 moreInstitutions (2)
Abstract: The gut microbiota comprises a complex community of microorganism species that resides in our gastrointestinal ecosystem and whose alterations influence not only various gut disorders but also central nervous system disorders such as Alzheimer's disease (AD). AD, the most common form of dementia, is a neurodegenerative disorder associated with impaired cognition and cerebral accumulation of amyloid-β peptides (Aβ). Most notably, the microbiota-gut-brain axis is a bidirectional communication system that is not fully understood, but includes neural, immune, endocrine, and metabolic pathways. Studies in germ-free animals and in animals exposed to pathogenic microbial infections, antibiotics, probiotics, or fecal microbiota transplantation suggest a role for the gut microbiota in host cognition or AD-related pathogenesis. The increased permeability of the gut and blood-brain barrier induced by microbiota dysbiosis may mediate or affect AD pathogenesis and other neurodegenerative disorders, especially those associated with aging. In addition, bacteria populating the gut microbiota can secrete large amounts of amyloids and lipopolysaccharides, which might contribute to the modulation of signaling pathways and the production of proinflammatory cytokines associated with the pathogenesis of AD. Moreover, imbalances in the gut microbiota can induce inflammation that is associated with the pathogenesis of obesity, type 2 diabetes mellitus, and AD. The purpose of this review is to summarize and discuss the current findings that may elucidate the role of the gut microbiota in the development of AD. Understanding the underlying mechanisms may provide new insights into novel therapeutic strategies for AD.

... read more

Topics: Dysbiosis (63%), Gut flora (60%), Gut–brain axis (59%)

333 Citations

No. of citations received by the Paper in previous years