scispace - formally typeset
Search or ask a question
Journal ArticleDOI

American Cancer Society Guidelines for Breast Screening with MRI as an Adjunct to Mammography

TL;DR: There are several risk subgroups for which the available data are insufficient to recommend for or against screening, including women with a personal history of breast cancer, carcinoma in situ, atypical hyperplasia, and extremely dense breasts on mammography.
Abstract: New evidence on breast Magnetic Resonance Imaging (MRI) screening has become available since the American Cancer Society (ACS) last issued guidelines for the early detection of breast cancer in 2003. A guideline panel has reviewed this evidence and developed new recommendations for women at different defined levels of risk. Screening MRI is recommended for women with an approximately 20-25% or greater lifetime risk of breast cancer, including women with a strong family history of breast or ovarian cancer and women who were treated for Hodgkin disease. There are several risk subgroups for which the available data are insufficient to recommend for or against screening, including women with a personal history of breast cancer, carcinoma in situ, atypical hyperplasia, and extremely dense breasts on mammography. Diagnostic uses of MRI were not considered to be within the scope of this review.
Citations
More filters
01 Jan 2014
TL;DR: Lymphedema is a common complication after treatment for breast cancer and factors associated with increased risk of lymphedEMA include extent of axillary surgery, axillary radiation, infection, and patient obesity.

1,988 citations

Journal ArticleDOI
TL;DR: Estimates of the number of new cancer cases and deaths for children and adolescents in the United States are provided and an overview of risk factors, symptoms, treatment, and long‐term and late effects for common pediatric cancers are provided.
Abstract: In this article, the American Cancer Society provides estimates of the number of new cancer cases and deaths for children and adolescents in the United States and summarizes the most recent and comprehensive data on cancer incidence, mortality, and survival from the National Cancer Institute, the Centers for Disease Control and Prevention, and the North American Association of Central Cancer Registries (which are reported in detail for the first time here and include high-quality data from 45 states and the District of Columbia, covering 90% of the US population). In 2014, an estimated 15,780 new cases of cancer will be diagnosed and 1960 deaths from cancer will occur among children and adolescents aged birth to 19 years. The annual incidence rate of cancer in children and adolescents is 186.6 per 1 million children aged birth to 19 years. Approximately 1 in 285 children will be diagnosed with cancer before age 20 years, and approximately 1 in 530 young adults between the ages of 20 and 39 years is a childhood cancer survivor. It is therefore likely that most pediatric and primary care practices will be involved in the diagnosis, treatment, and follow-up of young patients and survivors. In addition to cancer statistics, this article will provide an overview of risk factors, symptoms, treatment, and long-term and late effects for common pediatric cancers.

1,786 citations

Journal ArticleDOI
14 May 2008-JAMA
TL;DR: The diagnostic yield, sensitivity, specificity, and diagnostic accuracy (assessed by the area under the receiver operating characteristic curve) of combined mammography plus ultrasound vs mammography alone and the positive predictive value of biopsy recommendations for mammographyplus ultrasound vs Mammography alone are compared.
Abstract: Context Screening ultrasound may depict small, node-negative breast cancers not seen on mammography. Objective To compare the diagnostic yield, defined as the proportion of women with positive screen test results and positive reference standard, and performance of screening with ultrasound plus mammography vs mammography alone in women at elevated risk of breast cancer. Design, Setting, and Participants From April 2004 to February 2006, 2809 women, with at least heterogeneously dense breast tissue in at least 1 quadrant, were recruited from 21 sites to undergo mammographic and physician-performed ultrasonographic examinations in randomized order by a radiologist masked to the other examination results. Reference standard was defined as a combination of pathology and 12-month follow-up and was available for 2637 (96.8%) of the 2725 eligible participants. Main Outcome Measures Diagnostic yield, sensitivity, specificity, and diagnostic accuracy (assessed by the area under the receiver operating characteristic curve) of combined mammography plus ultrasound vs mammography alone and the positive predictive value of biopsy recommendations for mammography plus ultrasound vs mammography alone. Results Forty participants (41 breasts) were diagnosed with cancer: 8 suspicious on both ultrasound and mammography, 12 on ultrasound alone, 12 on mammography alone, and 8 participants (9 breasts) on neither. The diagnostic yield for mammography was 7.6 per 1000 women screened (20 of 2637) and increased to 11.8 per 1000 (31 of 2637) for combined mammography plus ultrasound; the supplemental yield was 4.2 per 1000 women screened (95% confidence interval [CI], 1.1-7.2 per 1000; P = .003 that supplemental yield is 0). The diagnostic accuracy for mammography was 0.78 (95% CI, 0.67-0.87) and increased to 0.91 (95% CI, 0.84-0.96) for mammography plus ultrasound (P = .003 that difference is 0). Of 12 supplemental cancers detected by ultrasound alone, 11 (92%) were invasive with a median size of 10 mm (range, 5-40 mm; mean [SE], 12.6 [3.0] mm) and 8 of the 9 lesions (89%) reported had negative nodes. The positive predictive value of biopsy recommendation after full diagnostic workup was 19 of 84 for mammography (22.6%; 95% CI, 14.2%-33%), 21 of 235 for ultrasound (8.9%, 95% CI, 5.6%-13.3%), and 31 of 276 for combined mammography plus ultrasound (11.2%; 95% CI. 7.8%-15.6%). Conclusions Adding a single screening ultrasound to mammography will yield an additional 1.1 to 7.2 cancers per 1000 high-risk women, but it will also substantially increase the number of false positives. Trial Registration clinicaltrials.gov Identifier: NCT00072501

1,251 citations


Additional excerpts

  • ...Age at enrollment, yb Median (range) 55 (25-91) 55 (25-91)...

    [...]

Journal ArticleDOI
20 Oct 2015-JAMA
TL;DR: The updated ACS guidelines for breast cancer screening for women at average risk of breast cancer provide evidence-based recommendations and should be considered by physicians and women in discussions about breast cancer Screening.
Abstract: Importance Breast cancer is a leading cause of premature mortality among US women. Early detection has been shown to be associated with reduced breast cancer morbidity and mortality. Objective To update the American Cancer Society (ACS) 2003 breast cancer screening guideline for women at average risk for breast cancer. Process The ACS commissioned a systematic evidence review of the breast cancer screening literature to inform the update and a supplemental analysis of mammography registry data to address questions related to the screening interval. Formulation of recommendations was based on the quality of the evidence and judgment (incorporating values and preferences) about the balance of benefits and harms. Evidence Synthesis Screening mammography in women aged 40 to 69 years is associated with a reduction in breast cancer deaths across a range of study designs, and inferential evidence supports breast cancer screening for women 70 years and older who are in good health. Estimates of the cumulative lifetime risk of false-positive examination results are greater if screening begins at younger ages because of the greater number of mammograms, as well as the higher recall rate in younger women. The quality of the evidence for overdiagnosis is not sufficient to estimate a lifetime risk with confidence. Analysis examining the screening interval demonstrates more favorable tumor characteristics when premenopausal women are screened annually vs biennially. Evidence does not support routine clinical breast examination as a screening method for women at average risk. Recommendations The ACS recommends that women with an average risk of breast cancer should undergo regular screening mammography starting at age 45 years (strong recommendation). Women aged 45 to 54 years should be screened annually (qualified recommendation). Women 55 years and older should transition to biennial screening or have the opportunity to continue screening annually (qualified recommendation). Women should have the opportunity to begin annual screening between the ages of 40 and 44 years (qualified recommendation). Women should continue screening mammography as long as their overall health is good and they have a life expectancy of 10 years or longer (qualified recommendation). The ACS does not recommend clinical breast examination for breast cancer screening among average-risk women at any age (qualified recommendation). Conclusions and Relevance These updated ACS guidelines provide evidence-based recommendations for breast cancer screening for women at average risk of breast cancer. These recommendations should be considered by physicians and women in discussions about breast cancer screening.

1,244 citations

Journal ArticleDOI
01 Sep 2010-JAMA
TL;DR: Among a cohort of women with BRCa1 and BRCA2 mutations, the use of risk-reducing mastectomy was associated with a lower risk of breast cancer, first diagnosis of breastcancer, all-cause mortality, breast cancer-specific mortality, and ovarian cancer- specific mortality.
Abstract: Context Mastectomy and salpingo-oophorectomy are widely used by carriers of BRCA1 or BRCA2 mutations to reduce their risks of breast and ovarian cancer. Objective To estimate risk and mortality reduction stratified by mutation and prior cancer status. Design, Setting, and Participants Prospective, multicenter cohort study of 2482 women with BRCA1 or BRCA2 mutations ascertained between 1974 and 2008. The study was conducted at 22 clinical and research genetics centers in Europe and North America to assess the relationship of risk-reducing mastectomy or salpingo-oophorectomy with cancer outcomes. The women were followed up until the end of 2009. Main Outcomes Measures Breast and ovarian cancer risk, cancer-specific mortality, and overall mortality. Results No breast cancers were diagnosed in the 247 women with risk-reducing mastectomy compared with 98 women of 1372 diagnosed with breast cancer who did not have risk-reducing mastectomy. Compared with women who did not undergo risk-reducing salpingo-oophorectomy, women who underwent salpingo-oophorectomy had a lower risk of ovarian cancer, including those with prior breast cancer (6% vs 1%, respectively; hazard ratio [HR], 0.14; 95% confidence interval [CI], 0.04-0.59) and those without prior breast cancer (6% vs 2%; HR, 0.28 [95% CI, 0.12-0.69]), and a lower risk of first diagnosis of breast cancer in BRCA1 mutation carriers (20% vs 14%; HR, 0.63 [95% CI, 0.41-0.96]) and BRCA2 mutation carriers (23% vs 7%; HR, 0.36 [95% CI, 0.16-0.82]). Compared with women who did not undergo risk-reducing salpingo-oophorectomy, undergoing salpingo-oophorectomy was associated with lower all-cause mortality (10% vs 3%; HR, 0.40 [95% CI, 0.26-0.61]), breast cancer–specific mortality (6% vs 2%; HR, 0.44 [95% CI, 0.26-0.76]), and ovarian cancer–specific mortality (3% vs 0.4%; HR, 0.21 [95% CI, 0.06-0.80]). Conclusions Among a cohort of women with BRCA1 and BRCA2 mutations, the use of risk-reducing mastectomy was associated with a lower risk of breast cancer; risk-reducing salpingo-oophorectomy was associated with a lower risk of ovarian cancer, first diagnosis of breast cancer, all-cause mortality, breast cancer–specific mortality, and ovarian cancer–specific mortality.

1,198 citations

References
More filters
Journal ArticleDOI
TL;DR: The addition of bevacizumab to fluorouracil-based combination chemotherapy results in statistically significant and clinically meaningful improvement in survival among patients with metastatic colorectal cancer.
Abstract: background Bevacizumab, a monoclonal antibody against vascular endothelial growth factor, has shown promising preclinical and clinical activity against metastatic colorectal cancer, particularly in combination with chemotherapy. methods Of 813 patients with previously untreated metastatic colorectal cancer, we randomly assigned 402 to receive irinotecan, bolus fluorouracil, and leucovorin (IFL) plus bevacizumab (5 mg per kilogram of body weight every two weeks) and 411 to receive IFL plus placebo. The primary end point was overall survival. Secondary end points were progression-free survival, the response rate, the duration of the response, safety, and the quality of life. results The median duration of survival was 20.3 months in the group given IFL plus bevacizumab, as compared with 15.6 months in the group given IFL plus placebo, corresponding to a hazard ratio for death of 0.66 (P<0.001). The median duration of progressionfree survival was 10.6 months in the group given IFL plus bevacizumab, as compared with 6.2 months in the group given IFL plus placebo (hazard ratio for disease progression, 0.54; P<0.001); the corresponding rates of response were 44.8 percent and 34.8 percent (P=0.004). The median duration of the response was 10.4 months in the group given IFL plus bevacizumab, as compared with 7.1 months in the group given IFL plus placebo (hazard ratio for progression, 0.62; P=0.001). Grade 3 hypertension was more common during treatment with IFL plus bevacizumab than with IFL plus placebo (11.0 percent vs. 2.3 percent) but was easily managed. conclusions The addition of bevacizumab to fluorouracil-based combination chemotherapy results in statistically significant and clinically meaningful improvement in survival among patients with metastatic colorectal cancer.

10,161 citations

Journal ArticleDOI
TL;DR: This new capillary growth is even more vigorous and continuous than a similar outgrowth of capillary sprouts observed in 2016 and is likely to be accompanied by neovascularization.
Abstract: THE growth of solid neoplasms is always accompanied by neovascularization. This new capillary growth is even more vigorous and continuous than a similar outgrowth of capillary sprouts observed in f...

9,874 citations

Journal ArticleDOI
07 Oct 1994-Science
TL;DR: A strong candidate for the 17q-linked BRCA1 gene, which influences susceptibility to breast and ovarian cancer, has been identified by positional cloning methods.
Abstract: A strong candidate for the 17q-linked BRCA1 gene, which influences susceptibility to breast and ovarian cancer, has been identified by positional cloning methods. Probable predisposing mutations have been detected in five of eight kindreds presumed to segregate BRCA1 susceptibility alleles. The mutations include an 11-base pair deletion, a 1-base pair insertion, a stop codon, a missense substitution, and an inferred regulatory mutation. The BRCA1 gene is expressed in numerous tissues, including breast and ovary, and encodes a predicted protein of 1863 amino acids. This protein contains a zinc finger domain in its amino-terminal region, but is otherwise unrelated to previously described proteins. Identification of BRCA1 should facilitate early diagnosis of breast and ovarian cancer susceptibility in some individuals as well as a better understanding of breast cancer biology.

6,118 citations

Journal ArticleDOI
TL;DR: Risks in carriers were higher when based on index breast cancer cases diagnosed at <35 years of age and for variation in risk by mutation position for both genes, and some evidence for a reduction in risk in women from earlier birth cohorts is found.
Abstract: Germline mutations in BRCA1 and BRCA2 confer high risks of breast and ovarian cancer, but the average magnitude of these risks is uncertain and may depend on the context. Estimates based on multiple-case families may be enriched for mutations of higher risk and/or other familial risk factors, whereas risk estimates from studies based on cases unselected for family history have been imprecise. We pooled pedigree data from 22 studies involving 8,139 index case patients unselected for family history with female (86%) or male (2%) breast cancer or epithelial ovarian cancer (12%), 500 of whom had been found to carry a germline mutation in BRCA1 or BRCA2. Breast and ovarian cancer incidence rates for mutation carriers were estimated using a modified segregation analysis, based on the occurrence of these cancers in the relatives of mutation-carrying index case patients. The average cumulative risks in BRCA1-mutation carriers by age 70 years were 65% (95% confidence interval 44%-78%) for breast cancer and 39% (18%-54%) for ovarian cancer. The corresponding estimates for BRCA2 were 45% (31%-56%) and 11% (2.4%-19%). Relative risks of breast cancer declined significantly with age for BRCA1-mutation carriers (P trend.0012) but not for BRCA2-mutation carriers. Risks in carriers were higher when based on index breast cancer cases diagnosed at <35 years of age. We found some evidence for a reduction in risk in women from earlier birth cohorts and for variation in risk by mutation position for both genes. The pattern of cancer risks was similar to those found in multiple-case families, but their absolute magnitudes were lower, particularly for BRCA2. The variation in risk by age at diagnosis of index case is consistent with the effects of other genes modifying cancer risk in carriers.

3,384 citations

Journal ArticleDOI
TL;DR: To assist in medical counseling, a method to estimate the chance that a woman with given age and risk factors will develop breast cancer over a specified interval is presented and individualized breast cancer probabilities are calculated.
Abstract: To assist in medical counseling, we present a method to estimate the chance that a woman with given age and risk factors will develop breast cancer over a specified interval. The risk factors used were age at menarche, age at first live birth, number of previous biopsies, and number of first-degree relatives with breast cancer. A model of relative risks for various combinations of these factors was developed from case-control data from the Breast Cancer Detection Demonstration Project (BCDDP). The model allowed for the fact that relative risks associated with previous breast biopsies were smaller for women aged 50 or more than for younger women. Thus, the proportional hazards models for those under age 50 and for those of age 50 or more. The baseline age-specific hazard rate, which is the rate for a patient without identified risk factors, is computed as the product of the observed age-specific composite hazard rate times the quantity 1 minus the attributable risk. We calculated individualized breast cancer probabilities from information on relative risks and the baseline hazard rate. These calculations take competing risks and the interval of risk into account. Our data were derived from women who participated in the BCDDP and who tended to return for periodic examinations. For this reason, the risk projections given are probably most reliable for counseling women who plan to be examined about once a year.

3,080 citations

Related Papers (5)