scispace - formally typeset
Search or ask a question
Book ChapterDOI

Amino Acids in the Nutrition, Metabolism, and Health of Domestic Cats.

TL;DR: In this article, the authors focus on AA nutrition and metabolism in cats and present a review of the requirements of cats for proteinogenic and non-proteinogenic Amino Acids (EAAs).
Abstract: Domestic cats (carnivores) require high amounts of dietary amino acids (AAs) for normal growth, development, and reproduction. Amino acids had been traditionally categorised as nutritionally essential (EAAs) or nonessential (NEAAs), depending on whether they are synthesized de novo in the body. This review will focus on AA nutrition and metabolism in cats. Like other mammals, cats do not synthesize the carbon skeletons of twelve proteinogenic AAs: Arg, Cys, His, Ile, Leu, Lys, Met, Phe, Thr, Trp, Tyr, and Val. Like other feline carnivores but unlike many mammals, cats do not synthesize citrulline and have a very limited ability to produce taurine from Cys. Except for Leu and Lys that are strictly ketogenic AAs, most EAAs are both glucogenic and ketogenic AAs. All the EAAs (including taurine) must be provided in diets for cats. These animals are sensitive to dietary deficiencies of Arg and taurine, which rapidly result in life-threatening hyperammonemia and retinal damage, respectively. Although the National Research Council (NCR, Nutrient requirements of dogs and cats. National Academies Press, Washington, DC, 2006) does not recommend dietary requirements of cats for NEAAs, much attention should be directed to this critical issue of nutrition. Cats can synthesize de novo eight proteinogenic AAs: Ala, Asn, Asp, Gln, Glu, Gly, Pro, and Ser, as well as some nonproteinogenic AAs, such as γ-aminobutyrate, ornithine, and β-alanine with important physiological functions. Some of these AAs (e.g., Gln, Glu, Pro, and Gly) are crucial for intestinal integrity and health. Except for Gln, AAs in the arterial blood of cats may not be available to the mucosa of the small intestine. Plant-source foodstuffs lack taurine and generally contain inadequate Met and Cys and, therefore, should not be fed to cats in any age group. Besides meat, animal-source foodstuffs (including ruminant meat & bone meal, poultry by-product meal, porcine mucosal protein, and chicken visceral digest) are good sources of proteinogenic AAs and taurine for cats. Meeting dietary requirements for both EAAs and NEAAs in proper amounts and balances is crucial for improving the health, wellbeing, longevity, and reproduction of cats.
Citations
More filters
Journal ArticleDOI
Guoyao Wu1
TL;DR: In this article, the authors discuss how to mitigate antimicrobial resistance and develop prebiotic and probiotic alternatives to in-feed antibiotics in animal production, while helping reduce greenhouse gas emissions, minimize the urinary and fecal excretion of nitrogenous and other wastes to the environment, and sustain animal agriculture (including aquaculture).
Abstract: Consumption of high-quality animal protein plays an important role in improving human nutrition, growth, development, and health. With an exponential growth of the global population, demands for animal-sourced protein are expected to increase by 60% between 2021 and 2050. In addition to the production of food protein and fiber (wool), animals are useful models for biomedical research to prevent and treat human diseases and serve as bioreactors to produce therapeutic proteins. For a high efficiency to transform low-quality feedstuffs and forages into high-quality protein and highly bioavailable essential minerals in diets of humans, farm animals have dietary requirements for energy, amino acids, lipids, carbohydrates, minerals, vitamins, and water in their life cycles. All nutrients interact with each other to influence the growth, development, and health of mammals, birds, fish, and crustaceans, and adequate nutrition is crucial for preventing and treating their metabolic disorders (including metabolic diseases) and infectious diseases. At the organ level, the small intestine is not only the terminal site for nutrient digestion and absorption, but also intimately interacts with a diverse community of intestinal antigens and bacteria to influence gut and whole-body health. Understanding the species and metabolism of intestinal microbes, as well as their interactions with the intestinal immune systems and the host intestinal epithelium can help to mitigate antimicrobial resistance and develop prebiotic and probiotic alternatives to in-feed antibiotics in animal production. As abundant sources of amino acids, bioactive peptides, energy, and highly bioavailable minerals and vitamins, animal by-product feedstuffs are effective for improving the growth, development, health, feed efficiency, and survival of livestock and poultry, as well as companion and aquatic animals. The new knowledge covered in this and related volumes of Adv Exp Med Biol is essential to ensure sufficient provision of animal protein for humans, while helping reduce greenhouse gas emissions, minimize the urinary and fecal excretion of nitrogenous and other wastes to the environment, and sustain animal agriculture (including aquaculture).

32 citations

Book ChapterDOI
TL;DR: Amino acids (AAs) are the building blocks of proteins that have both structural and metabolic functions in humans and other animals as mentioned in this paper, and proteinogenic AAs are alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, histidine, isoleucine, leucine and lysine, methionine, phenylalanine.
Abstract: Amino acids (AAs) are the building blocks of proteins that have both structural and metabolic functions in humans and other animals. In mammals, birds, fish, and crustaceans, proteinogenic AAs are alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. All animals can synthesize de novo alanine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and serine, whereas most mammals (including humans and pigs) can synthesize de novo arginine. Results of extensive research over the past three decades have shown that humans and other animals have dietary requirements for AAs that are synthesizable de novo in animal cells. Recent advances in analytical methods have allowed us to determine all proteinogenic AAs in foods consumed by humans, livestock, poultry, fish, and crustaceans. Both plant- and animal-sourced foods contain high amounts of glutamate, glutamine, aspartate, asparagine, and branched-chain AAs. Cysteine, glycine, lysine, methionine, proline, threonine, and tryptophan generally occur in low amounts in plant products but are enriched in animal products. In addition, taurine and creatine (essential for the integrity and function of tissues) are absent from plants but are abundant in meat and present in all animal-sourced foods. A combination of plant- and animal products is desirable for the healthy diets of humans and omnivorous animals. Furthermore, animal-sourced feedstuffs can be included in the diets of farm and companion animals to cost-effectively improve their growth performance, feed efficiency, and productivity, while helping to sustain the global animal agriculture (including aquaculture).

25 citations

Book ChapterDOI
TL;DR: A review of amino acid usage in dog nutrition can be found in this article, where the most frequent consideration of consumers and dog food manufacturers is protein source and concentration with a growing emphasis on amino acid composition and bioavailability.
Abstract: The dog has assumed a prominent role in human society. Associated with that status, diet choices for companion dogs have begun to reflect the personal preferences of the owners, with greater emphasis on specialty diets such as organic, vegan/vegetarian, and omission or inclusion of specific ingredients. Despite consumer preferences and many marketing strategies employed, the diets must ensure nutritional adequacy for the dog; if not, health becomes compromised, sometimes severely. The most frequent consideration of consumers and dog food manufacturers is protein source and concentration with a growing emphasis on amino acid composition and bioavailability. Amino acids in general play diverse and critical roles in the dog, with specific amino acids being essential. This review covers what is known regarding amino acids in dog nutrition.

10 citations

Book ChapterDOI
TL;DR: The proteinogenic AAs are alanine, arginine, aspartate, asparagine, cysteine, glutamate, glutamine, glycine, histidine, leucine, lysine, methionine, phenylalanine, proline and tryptophan, tyrosine as mentioned in this paper.
Abstract: Proteins are large polymers of amino acids (AAs) linked via peptide bonds, and major components for the growth and development of tissues in zoo animals (including mammals, birds, and fish). The proteinogenic AAs are alanine, arginine, aspartate, asparagine, cysteine, glutamate, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. Except for glycine, they are all present in the L-isoform. Some carnivores may also need taurine (a nonproteinogenic AA) in their diet. Adequate dietary intakes of AAs are necessary for the growth, development, reproduction, health and longevity of zoo animals. Extensive research has established dietary nutrient requirements for humans, domestic livestock and companion animals. However, this is not true for many exotic or endangered species found in zoos due to the obstacles that accompany working with these species. Information on diets and nutrient profiles of free-ranging animals is needed. Even with adequate dietary intake of crude protein, dietary AAs may still be unbalanced, which can lead to nutrition-related diseases and disorders commonly observed in captive zoo species, such as dilated cardiomyopathy, urolithiasis, gut dysbiosis, and hormonal imbalances. There are differences in AA metabolism among carnivores, herbivores and omnivores. It is imperative to consider these idiosyncrasies when formulating diets based on established nutritional requirements of domestic species. With optimal health, populations of zoo animals will have a vastly greater chance of thriving in captivity. For endangered species especially, maintaining stable captive populations is crucial for conservation. Thus, adequate provision of AAs in diets plays a crucial role in the management, sustainability and expansion of healthy zoo animals.

10 citations

Journal ArticleDOI
TL;DR: The liver size increases with lipid or glycogen accumulation, and excess glucose is stored either as glycogen through glycogenesis in hepatocytes or as triglycerides via lipogenesis in tissues, depending on the species as discussed by the authors.
Abstract: Carbohydrate, which is the most abundant nutrient in plant-sourced feedstuffs, is an economically indispensable component in commercial compound feeds for fish. This nutrient can enhance the physical quality of diets and allow for pellet expansion during extrusion. There is compelling evidence that an excess dietary intake of starch causes hepatic disorders, thereby further reducing the overall food consumption and growth performance of fish species. Among the severe metabolic disturbances are glycogenic hepatopathy (hepatomegaly caused by the excessive accumulation of glycogen in hepatocytes) and hepatic steatosis (the accumulation of large vacuoles of triacylglycerols in hepatocytes). The development of those disorders is mainly due to the limited ability of fish to oxidize glucose and control blood glucose concentration. The prolonged elevations of blood glucose increase glucose intake by the liver, and excess glucose is stored either as glycogen through glycogenesis in hepatocytes or as triglycerides via lipogenesis in tissues, depending on the species. In some fish species (e.g., largemouth bass), the liver has a low ability to regulate glycolysis, gluconeogenesis, and glycogen breakdown in response to high starch intake. For most species of fish, the liver size increases with lipid or glycogen accumulation when they have a high starch intake. It is a challenge to develop the same set of diagnostic criteria for all fish species as their physiology or metabolic patterns differ. Although glycogenic hepatopathy appears to be a common disease in carnivorous fish, it has been under-recognized in many studies. As a result, understanding these diseases and their pathogeneses in different fish species is crucial for manufacturing cost-effective pellet diets to promote the health, growth, survival, and feed efficiency of fish in future.

8 citations

References
More filters
Journal ArticleDOI
TL;DR: Physiological roles and relationships between the pathways of arginine synthesis and catabolism in vivo are complex and difficult to analyse, owing to compartmentalized expression of various enzymes at both organ and subcellular levels.
Abstract: Arginine is one of the most versatile amino acids in animal cells, serving as a precursor for the synthesis not only of proteins but also of nitric oxide, urea, polyamines, proline, glutamate, creatine and agmatine. Of the enzymes that catalyse rate-controlling steps in arginine synthesis and catabolism, argininosuccinate synthase, the two arginase isoenzymes, the three nitric oxide synthase isoenzymes and arginine decarboxylase have been recognized in recent years as key factors in regulating newly identified aspects of arginine metabolism. In particular, changes in the activities of argininosuccinate synthase, the arginases, the inducible isoenzyme of nitric oxide synthase and also cationic amino acid transporters play major roles in determining the metabolic fates of arginine in health and disease, and recent studies have identified complex patterns of interaction among these enzymes. There is growing interest in the potential roles of the arginase isoenzymes as regulators of the synthesis of nitric oxide, polyamines, proline and glutamate. Physiological roles and relationships between the pathways of arginine synthesis and catabolism in v i v o are complex and difficult to analyse, owing to compartmentalized expression of various enzymes at both organ (e.g. liver, small intestine and kidney) and subcellular (cytosol and mitochondria) levels, as well as to changes in expression during development and in response to diet, hormones and cytokines. The ongoing development of new cell lines and animal models using cDNA clones and genes for key arginine metabolic enzymes will provide new approaches more clearly elucidating the physiological roles of these enzymes. Correspondence may be addressed to either Dr. G. Wu (e-mail g-wu@tamu.edu) or Dr. S. M. Morris, Jr. (e-mail sid@hoffman.mgen.pitt.edu) at the addresses given.

2,553 citations

Journal ArticleDOI
19 Feb 2010-Science
TL;DR: It is revealed that lysine acetylation is a prevalent modification in enzymes that catalyze intermediate metabolism, and plays a major role in metabolic regulation.
Abstract: Protein lysine acetylation has emerged as a key posttranslational modification in cellular regulation, in particular through the modification of histones and nuclear transcription regulators. We show that lysine acetylation is a prevalent modification in enzymes that catalyze intermediate metabolism. Virtually every enzyme in glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, the urea cycle, fatty acid metabolism, and glycogen metabolism was found to be acetylated in human liver tissue. The concentration of metabolic fuels, such as glucose, amino acids, and fatty acids, influenced the acetylation status of metabolic enzymes. Acetylation activated enoyl–coenzyme A hydratase/3-hydroxyacyl–coenzyme A dehydrogenase in fatty acid oxidation and malate dehydrogenase in the TCA cycle, inhibited argininosuccinate lyase in the urea cycle, and destabilized phosphoenolpyruvate carboxykinase in gluconeogenesis. Our study reveals that acetylation plays a major role in metabolic regulation.

1,668 citations

Journal ArticleDOI
TL;DR: Cysteine, by virtue of its ability to form disulfide bonds, plays a crucial role in protein structure and in protein-folding pathways, and may be converted to such important products as glutathione and taurine.
Abstract: Methionine, cysteine, homocysteine, and taurine are the 4 common sulfur-containing amino acids, but only the first 2 are incorporated into proteins. Sulfur belongs to the same group in the periodic table as oxygen but is much less electronegative. This difference accounts for some of the distinctive properties of the sulfur-containing amino acids. Methionine is the initiating amino acid in the synthesis of virtually all eukaryotic proteins; N-formylmethionine serves the same function in prokaryotes. Within proteins, many of the methionine residues are buried in the hydrophobic core, but some, which are exposed, are susceptible to oxidative damage. Cysteine, by virtue of its ability to form disulfide bonds, plays a crucial role in protein structure and in protein-folding pathways. Methionine metabolism begins with its activation to S-adenosylmethionine. This is a cofactor of extraordinary versatility, playing roles in methyl group transfer, 5'-deoxyadenosyl group transfer, polyamine synthesis, ethylene synthesis in plants, and many others. In animals, the great bulk of S-adenosylmethionine is used in methylation reactions. S-Adenosylhomocysteine, which is a product of these methyltransferases, gives rise to homocysteine. Homocysteine may be remethylated to methionine or converted to cysteine by the transsulfuration pathway. Methionine may also be metabolized by a transamination pathway. This pathway, which is significant only at high methionine concentrations, produces a number of toxic endproducts. Cysteine may be converted to such important products as glutathione and taurine. Taurine is present in many tissues at higher concentrations than any of the other amino acids. It is an essential nutrient for cats.

872 citations

Journal ArticleDOI
TL;DR: This paper summarizes a century of scientific exploration on the (patho)physiological role of carnosine and related compounds, and concludes that far more experiments are required to gain a full understanding of the function and applications of this intriguing molecule.
Abstract: Carnosine (β-alanyl-l-histidine) was discovered in 1900 as an abundant non-protein nitrogen-containing compound of meat. The dipeptide is not only found in skeletal muscle, but also in other excitable tissues. Most animals, except humans, also possess a methylated variant of carnosine, either anserine or ophidine/balenine, collectively called the histidine-containing dipeptides. This review aims to decipher the physiological roles of carnosine, based on its biochemical properties. The latter include pH-buffering, metal-ion chelation, and antioxidant capacity as well as the capacity to protect against formation of advanced glycation and lipoxidation end-products. For these reasons, the therapeutic potential of carnosine supplementation has been tested in numerous diseases in which ischemic or oxidative stress are involved. For several pathologies, such as diabetes and its complications, ocular disease, aging, and neurological disorders, promising preclinical and clinical results have been obtained. Also the pathophysiological relevance of serum carnosinase, the enzyme actively degrading carnosine into l-histidine and β-alanine, is discussed. The carnosine system has evolved as a pluripotent solution to a number of homeostatic challenges. l-Histidine, and more specifically its imidazole moiety, appears to be the prime bioactive component, whereas β-alanine is mainly regulating the synthesis of the dipeptide. This paper summarizes a century of scientific exploration on the (patho)physiological role of carnosine and related compounds. However, far more experiments in the fields of physiology and related disciplines (biology, pharmacology, genetics, molecular biology, etc.) are required to gain a full understanding of the function and applications of this intriguing molecule.

736 citations