scispace - formally typeset
Search or ask a question
Journal ArticleDOI

AMPK in myocardial infarction and diabetes: the yin/yang effect

Amr Moussa1, Ji Li1
01 Aug 2012-Acta Pharmaceutica Sinica B (Elsevier)-Vol. 2, Iss: 4, pp 368-378
TL;DR: Understanding so far of the role of AMPK in coordinating the cellular response to ischemic stress and reperfusion injury in the heart is summarized and a focused update on the pharmacological agents activating AMPK for treatment of diabetes that show potential cardioprotective effects is provided.
About: This article is published in Acta Pharmaceutica Sinica B.The article was published on 2012-08-01 and is currently open access. It has received 25 citations till now. The article focuses on the topics: AMPK.
Citations
More filters
Journal ArticleDOI
TL;DR: Cardiac AMPK activation plays a critical role in maintaining mitochondrial function and inhibiting the inflammatory response caused by ischemic insults and modulates JNK-NF-κB signaling cascade during hypoxia and reoxygenation stress conditions.
Abstract: Background AMP-activated Protein Kinase (AMPK) is a stress-activated kinase that protects against cardiomyocyte injury during ischemia and reperfusion. c-Jun N-terminal kinase (JNK), a mitogen activated protein kinase, is activated by ischemia and reperfusion. NF-κB is an important transcription factor involved in ischemia and reperfusion injury. Methods and Results The intrinsic activation of AMPK attenuates the inflammation which occurred during ischemia/reperfusion through the modulation of the JNK mediated NF-κB signaling pathway. Rat cardiac myoblast H9c2 cells were subjected to hypoxia and/or reoxygenation to investigate the signal transduction that occurred during myocardial ischemia/reperfusion. Mitochondrial function was measured by the Seahorse XF24 V7 PS system. Hypoxia treatment triggered AMPK activation in H9c2 cells in a time dependent manner. The inhibition of hypoxic AMPK activation through a pharmacological approach (Compound C) or siRNA knockdown of AMPK α catalytic subunits caused dramatic augmentation in JNK activation, inflammatory NF-κB phosphorylation, and apoptosis during hypoxia and reoxygenation. Inhibition of AMPK activation significantly impaired mitochondrial function and increased the generation of reactive oxygen species (ROS) during hypoxia and reoxygenation. In contrast, pharmacological activation of AMPK by metformin significantly inhibited mitochondrial permeability transition pore (mPTP) opening and ROS generation. Moreover, AMPK activation significantly attenuated the JNK-NF-κB signaling cascade and inhibited mRNA and protein levels of pro-inflammatory cytokines, such as TNF-α and IL-6, during hyopoxia/reoxygenation in H9c2 cells. Intriguingly, both pharmacologic inhibition of JNK by JNK-IN-8 and siRNA knockdown of JNK signaling pathway attenuated NF-κB phosphorylation and apoptosis but did not affect AMPK activation in response to hypoxia and reoxygenation. Conclusions AMPK activation modulates JNK-NF-κB signaling cascade during hypoxia and reoxygenation stress conditions. Cardiac AMPK activation plays a critical role in maintaining mitochondrial function and inhibiting the inflammatory response caused by ischemic insults.

157 citations

Journal ArticleDOI
TL;DR: In this article, Sestrin2 protein was found to be expressed in adult cardiomyocytes and accumulated in the heart during ischemic conditions, and it was hypothesized that Sestin2 plays an influential role during myocardial ischemia to promote AMPK activation.
Abstract: The regulation of AMPK in the ischemic heart remains incompletely understood. Recent evidence implicates the role of Sestrin2 in the AMPK signaling pathway, and it is hypothesized that Sestrin2 plays an influential role during myocardial ischemia to promote AMPK activation. Sestrin2 protein was found to be expressed in adult cardiomyocytes and accumulated in the heart during ischemic conditions. Sestrin2 knockout (KO) mice were used to determine the importance of Sestrin2 during ischemia and reperfusion (I/R) injury. When wild-type (WT) and Sestrin2 KO mice were subjected to in vivo I/R, myocardial infarct size was significantly greater in Sestrin2 KO compared with WT hearts. Similarly, Langendorff perfused hearts indicated exacerbated postischemic contractile function in Sestrin2 KO hearts compared with WT. Ischemic AMPK activation was found to be impaired in the Sestrin2 KO hearts. Immunoprecipitation of Sestrin2 demonstrated an association with AMPK. Moreover, liver kinase B1 (LKB1), a major AMPK upstream kinase, was associated with the Sestrin2-AMPK complex in a time-dependent manner during ischemia, whereas this interaction was nearly abolished in Sestrin2 KO hearts. Thus, Sestrin2 plays an important role in cardioprotection against I/R injury, serving as an LKB1-AMPK scaffold to initiate AMPK activation during ischemic insults.

137 citations

Journal Article
TL;DR: Wang et al. as discussed by the authors found that Sestrin2 protein was found to be expressed in adult cardiomyocytes and accumulated in the heart during ischemic conditions.
Abstract: The regulation of AMPK in the ischemic heart remains incompletely understood. Recent evidence implicates the role of Sestrin2 in the AMPK signaling pathway, and it is hypothesized that Sestrin2 plays an influential role during myocardial ischemia to promote AMPK activation. Sestrin2 protein was found to be expressed in adult cardiomyocytes and accumulated in the heart during ischemic conditions. Sestrin2 knockout (KO) mice were used to determine the importance of Sestrin2 during ischemia and reperfusion (I/R) injury. When wild‐type (WT) and Sestrin2 KO mice were subjected to in vivo I/R, myocardial infarct size was significantly greater in Sestrin2 KO compared with WT hearts. Similarly, Langendorff perfused hearts indicated exacerbated postischemic contractile function in Sestrin2 KO hearts compared with WT. Ischemic AMPK activation was found to be impaired in the Sestrin2 KO hearts. Immunoprecipitation of Sestrin2 demonstrated an association with AMPK. Moreover, liver kinase B1 (LKB1), a major AMPK upstream kinase, was associated with the Sestrin2‐AMPK complex in a time‐dependent manner during ischemia, whereas this interaction was nearly abolished in Sestrin2 KO hearts. Thus, Sestrin2 plays an important role in cardioprotection against I/R injury, serving as an LKB1‐AMPK scaffold to initiate AMPK activation during ischemic insults.—Morrison, A., Chen, L. Wang, J., Zhang, M., Yang, H., Ma, Y., Budanov, A., Lee, J. H., Karin, M., Li, J. Sestrin2 promotes LKB1‐mediated AMPK activation in the ischemic heart. FASEB J. 29, 408‐417 (2015). www.fasebj.org

124 citations

Journal ArticleDOI
TL;DR: Natural products like berberine, quercetin, resveratrol, and so forth have shown significant potential in regulating and activating the AMPK pathway which can lead to manage diabetes mellitus and its complications.
Abstract: Diabetes affects a large population of the world. Lifestyle, obesity, dietary habits, and genetic factors contribute to this metabolic disease. A target pathway to control diabetes is the 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. AMPK is a heterotrimeric protein with α, β, and γ subunits. In several studies, AMPK activation enhanced glucose uptake into cells and inhibited intracellular glucose production. Impairment of AMPK activity is present in diabetes, according to some studies. Drugs used in the treatment of diabetes, such as metformin, are also known to act through regulation of AMPK. Thus, drugs that activate and regulate AMPK are potential candidates for the treatment of diabetes. In addition, many patients encounter important adverse effects, like hypoglycemia, while using allopathic drugs. As a result, the investigation of plant-derived natural drugs that lack adverse side effects and treat diabetes is necessary. Natural products like berberine, quercetin, resveratrol, and so forth have shown significant potential in regulating and activating the AMPK pathway which can lead to manage diabetes mellitus and its complications.

103 citations

Journal ArticleDOI
TL;DR: Sesn2 is a scaffold protein that mediates AMPK activation in the ischemic myocardium via an interaction with AMPK upstream LKB1 that prevents age‐related intolerance to ischemia and reperfusion injury by modulating substrate metabolism.
Abstract: A novel stress-inducible protein, Sestrin2 (Sesn2), declines in the heart with aging. AMPK has emerged as a pertinent stress-activated kinase that has been shown to have cardioprotective capabilities against myocardial ischemic injury. We identified the interaction between Sesn2 and AMPK in the ischemic heart. To determine whether ischemic AMPK activation-modulated by the Sesn2-AMPK complex in the heart-is impaired in aging that sensitizes the heart to ischemic insults, young C57BL/6 mice (age 3-4 mo), middle-aged mice (age 10-12 mo), and aged mice (age 24-26 mo) were subjected to left anterior descending coronary artery occlusion for in vivo regional ischemia. The ex vivo working heart system was used for measuring substrate metabolism. The protein level of Sesn2 in hearts was gradually decreased with aging. Of interest, ischemic AMPK activation was blunted in aged hearts compared with young hearts (P < 0.05); the AMPK downstream glucose uptake and the rate of glucose oxidation were significantly impaired in aged hearts during ischemia and reperfusion (P < 0.05 vs. young hearts). Myocardial infarction size was larger in aged hearts (P < 0.05 vs. young hearts). Immunoprecipitation with Sesn2 Ab revealed that cardiac Sesn2 forms a complex with AMPK and upstream liver kinase B1 (LKB1) during ischemia. Of interest, the binding affinity between Sesn2 and AMPK upstream LKB1 is impaired in aged hearts during ischemia (P < 0.05 vs. young hearts). Furthermore, Sesn2-knockout hearts demonstrate a cardiac phenotype and response to ischemic stress that is similar to wild-type aged hearts (i.e., impaired ischemic AMPK activation and higher sensitivity to ischemia- and reperfusion- induced injury). Adeno-associated virus-Sesn2 was delivered to aged hearts via a coronary delivery approach and significantly rescued the protein level of Sesn2 and the ischemic tolerance of aged hearts; therefore, Sesn2 is a scaffold protein that mediates AMPK activation in the ischemic myocardium via an interaction with AMPK upstream LKB1. Decreased Sesn2 levels in aging lead to a blunted ischemic AMPK activation, alterations in substrate metabolism, and an increased sensitivity to ischemic insults-Quan, N., Sun, W., Wang, L., Chen, X., Bogan, J. S., Zhou, X., Cates, C., Liu, Q., Zheng, Y., Li J. Sestrin2 prevents age-related intolerance to ischemia and reperfusion injury by modulating substrate metabolism.

100 citations

References
More filters
Journal ArticleDOI
TL;DR: The multiple anginal episodes that often precede myocardial infarction in man may delay cell death after coronary occlusion, and thereby allow for greater salvage of myocardium through reperfusion therapy, which is proposed to protect the heart from a subsequent sustained ischemic insult.
Abstract: We have previously shown that a brief episode of ischemia slows the rate of ATP depletion during subsequent ischemic episodes. Additionally, intermittent reperfusion may be beneficial to the myocardium by washing out catabolites that have accumulated during ischemia. Thus, we proposed that multiple brief ischemic episodes might actually protect the heart from a subsequent sustained ischemic insult. To test this hypothesis, two sets of experiments were performed. In the first set, one group of dogs (n = 7) was preconditioned with four 5 min circumflex occlusions, each separated by 5 min of reperfusion, followed by a sustained 40 min occlusion. The control group (n = 5) received a single 40 min occlusion. In the second study, an identical preconditioning protocol was followed, and animals (n = 9) then received a sustained 3 hr occlusion. Control animals (n = 7) received a single 3 hr occlusion. Animals were allowed 4 days of reperfusion thereafter. Histologic infarct size then was measured and was related to the major baseline predictors of infarct size, including the anatomic area at risk and collateral blood flow. In the 40 min study, preconditioning with ischemia paradoxically limited infarct size to 25% of that seen in the control group (p less than .001). Collateral blood flows were not significantly different in the two groups. In the 3 hr study, there was no difference between infarct size in the preconditioned and control groups. The protective effect of preconditioning in the 40 min study may have been due to reduced ATP depletion and/or to reduced catabolite accumulation during the sustained occlusion. These results suggest that the multiple anginal episodes that often precede myocardial infarction in man may delay cell death after coronary occlusion, and thereby allow for greater salvage of myocardium through reperfusion therapy.

7,750 citations

Journal Article
TL;DR: Adding simvastatin to existing treatments safely produces substantial additional benefits for a wide range of high-risk patients, irrespective of their initial cholesterol concentrations.

6,614 citations

Journal ArticleDOI
TL;DR: A molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1, is demonstrated and a signalling mechanism for UlK1 regulation and autophagic induction in response to nutrient signalling is revealed.
Abstract: Autophagy is a process by which components of the cell are degraded to maintain essential activity and viability in response to nutrient limitation. Extensive genetic studies have shown that the yeast ATG1 kinase has an essential role in autophagy induction. Furthermore, autophagy is promoted by AMP activated protein kinase (AMPK), which is a key energy sensor and regulates cellular metabolism to maintain energy homeostasis. Conversely, autophagy is inhibited by the mammalian target of rapamycin (mTOR), a central cell-growth regulator that integrates growth factor and nutrient signals. Here we demonstrate a molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1. Under glucose starvation, AMPK promotes autophagy by directly activating Ulk1 through phosphorylation of Ser 317 and Ser 777. Under nutrient sufficiency, high mTOR activity prevents Ulk1 activation by phosphorylating Ulk1 Ser 757 and disrupting the interaction between Ulk1 and AMPK. This coordinated phosphorylation is important for Ulk1 in autophagy induction. Our study has revealed a signalling mechanism for Ulk1 regulation and autophagy induction in response to nutrient signalling.

5,314 citations

Journal ArticleDOI
TL;DR: It is reported that metformin activates AMPK in hepatocytes; as a result, acetyl-CoA carboxylase (ACC) activity is reduced, fatty acid oxidation is induced, and expression of lipogenic enzymes is suppressed.
Abstract: Metformin is a widely used drug for treatment of type 2 diabetes with no defined cellular mechanism of action. Its glucose-lowering effect results from decreased hepatic glucose production and increased glucose utilization. Metformin's beneficial effects on circulating lipids have been linked to reduced fatty liver. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. Here we report that metformin activates AMPK in hepatocytes; as a result, acetyl-CoA carboxylase (ACC) activity is reduced, fatty acid oxidation is induced, and expression of lipogenic enzymes is suppressed. Activation of AMPK by metformin or an adenosine analogue suppresses expression of SREBP-1, a key lipogenic transcription factor. In metformin-treated rats, hepatic expression of SREBP-1 (and other lipogenic) mRNAs and protein is reduced; activity of the AMPK target, ACC, is also reduced. Using a novel AMPK inhibitor, we find that AMPK activation is required for metformin's inhibitory effect on glucose production by hepatocytes. In isolated rat skeletal muscles, metformin stimulates glucose uptake coincident with AMPK activation. Activation of AMPK provides a unified explanation for the pleiotropic beneficial effects of this drug; these results also suggest that alternative means of modulating AMPK should be useful for the treatment of metabolic disorders.

5,146 citations

Journal ArticleDOI
TL;DR: Patients and providers should consider the potential for serious adverse cardiovascular effects of treatment with rosiglitazone for type 2 diabetes mellitus as well as the availability of outcome data for myocardial infarction and death from cardiovascular causes.
Abstract: �Rosiglitazone was associated with a significant increase in the risk of myocardial infarction and with an increase in the risk of death from cardiovascular causes that had borderline significance. Our study was limited by a lack of access to original source data, which would have enabled time-to-event analysis. Despite these limitations, patients and providers should consider the potential for serious adverse cardiovascular effects of treatment with rosiglitazone for type 2 diabetes.

4,570 citations

Related Papers (5)