scispace - formally typeset
Journal ArticleDOI

Amplifying Genetic Logic Gates

Jerome Bonnet, +4 more
- 03 May 2013 - 
- Vol. 340, Iss: 6132, pp 599-603
Reads0
Chats0
TLDR
The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.
Abstract
Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.

read more

Citations
More filters

疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A

宁北芳, +1 more
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Journal ArticleDOI

Genetic circuit design automation

TL;DR: Electronic design automation principles from EDA are applied to enable increased circuit complexity and to simplify the incorporation of synthetic gene regulation into genetic engineering projects, and it is demonstrated that engineering principles can be applied to identify and suppress errors that complicate the compositions of larger systems.
Journal ArticleDOI

Principles of genetic circuit design

TL;DR: In this article, a review describes new tools that aid the construction of genetic circuits and discusses the failure modes encountered when assembling circuits, quantify their impact on performance, and review mitigation efforts.
Journal ArticleDOI

A brief history of synthetic biology

TL;DR: This Timeline article charts the technological and cultural lifetime of synthetic biology, with an emphasis on key breakthroughs and future challenges.

Principles of genetic circuit design

TL;DR: Better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.
References
More filters

疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A

宁北芳, +1 more
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Journal ArticleDOI

Enzymatic assembly of DNA molecules up to several hundred kilobases

TL;DR: An isothermal, single-reaction method for assembling multiple overlapping DNA molecules by the concerted action of a 5′ exonuclease, a DNA polymerase and a DNA ligase is described.
Journal ArticleDOI

Engineering and characterization of a superfolder green fluorescent protein.

TL;DR: A robustly folded version of GFP is generated, called 'superfolder' GFP, that folds well even when fused to poorly folded polypeptides, and shows improved tolerance of circular permutation, greater resistance to chemical denaturants and improved folding kinetics.
Journal ArticleDOI

Independent and Tight Regulation of Transcriptional Units in Escherichia Coli Via the LacR/O, the TetR/O and AraC/I1-I2 Regulatory Elements

TL;DR: Controlling the expression of the genes encoding luciferase, the low abundance E.coli protein DnaJ and restriction endonuclease Cfr9I not only demonstrates that high levels of expression can be achieved but also suggests that under conditions of optimal repression only around one mRNA every 3rd generation is produced.
Journal ArticleDOI

Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli.

TL;DR: Using the polymerase chain reaction and standard recombinant DNA techniques, a series of new multipurpose low-copy-number plasmids have been constructed, very useful for analyzing genes encoding proteins which are toxic in Escherichia coli in high copy number.
Related Papers (5)