scispace - formally typeset
Journal ArticleDOI

An all-silicon Raman laser

Reads0
Chats0
TLDR
The experimental demonstration of Raman lasing in a compact, all-silicon, waveguide cavity on a single silicon chip represents an important step towards producing practical continuous-wave optical amplifiers and lasers that could be integrated with other optoelectronic components onto CMOS-compatible silicon chips.
Abstract
With the growing use of optoelectronics in information technology, manipulating light is almost as important as manipulating electrons. Unfortunately silicon, workhorse of modern microelectronics, is next to useless in optical applications. There has been a massive effort to overcome silicon's inadequacies, and ways of coaxing silicon to handle light are under development but a key component — the laser — has been problematic. Last year a silicon laser was produced, but it involved metres of optical fibre. Now workers in Intel's research labs have come up with an all-silicon laser on a single chip. The device is compact and readily integrated with other silicon components. The possibility of light generation and/or amplification in silicon has attracted a great deal of attention1 for silicon-based optoelectronic applications owing to the potential for forming inexpensive, monolithic integrated optical components. Because of its indirect bandgap, bulk silicon shows very inefficient band-to-band radiative electron–hole recombination. Light emission in silicon has thus focused on the use of silicon engineered materials such as nanocrystals2,3,4,5, Si/SiO2 superlattices6, erbium-doped silicon-rich oxides7,8,9,10, surface-textured bulk silicon11 and Si/SiGe quantum cascade structures12. Stimulated Raman scattering (SRS) has recently been demonstrated as a mechanism to generate optical gain in planar silicon waveguide structures13,14,15,16,17,18,19,20,21. In fact, net optical gain in the range 2–11 dB due to SRS has been reported in centimetre-sized silicon waveguides using pulsed pumping18,19,20,21. Recently, a lasing experiment involving silicon as the gain medium by way of SRS was reported, where the ring laser cavity was formed by an 8-m-long optical fibre22. Here we report the experimental demonstration of Raman lasing in a compact, all-silicon, waveguide cavity on a single silicon chip. This demonstration represents an important step towards producing practical continuous-wave optical amplifiers and lasers that could be integrated with other optoelectronic components onto CMOS-compatible silicon chips.

read more

Citations
More filters
Journal ArticleDOI

Micrometre-scale silicon electro-optic modulator

TL;DR: Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures, and here a high-speed electro-optical modulator in compact silicon structures is experimentally demonstrated.
Journal ArticleDOI

Silicon microring resonators

TL;DR: An overview of the current state-of-the-art in silicon nanophotonic ring resonators is presented in this paper, where the basic theory of ring resonance is discussed and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes.
Journal ArticleDOI

The Past, Present, and Future of Silicon Photonics

TL;DR: In this paper, the state-of-the-art CMOS silicon-on-insulator (SOI) foundries are now being utilized in a crucial test of 1.55mum monolithic optoelectronic (OE) integration, a test sponsored by the Defense Advanced Research Projects Agency (DARPA).
Journal ArticleDOI

A continuous-wave Raman silicon laser

TL;DR: The demonstration of a continuous-wave silicon Raman laser is demonstrated and it is shown that TPA-induced FCA in silicon can be significantly reduced by introducing a reverse-biased p-i-n diode embedded in a silicon waveguide.
Journal ArticleDOI

New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics

TL;DR: In this paper, the authors review recent progress in non-silicon CMOS-compatible platforms for nonlinear optics, with a focus on Si3N4 and Hydex®.
References
More filters
Book

Nonlinear Fiber Optics

TL;DR: The field of nonlinear fiber optics has advanced enough that a whole book was devoted to it as discussed by the authors, which has been translated into Chinese, Japanese, and Russian languages, attesting to the worldwide activity in the field.
Journal ArticleDOI

Optical gain in silicon nanocrystals

TL;DR: It is demonstrated that light amplification is possible using silicon itself, in the form of quantum dots dispersed in a silicon dioxide matrix, which opens a route to the fabrication of a silicon laser.
Journal ArticleDOI

Demonstration of a silicon Raman laser

TL;DR: The demonstration of the first silicon Raman laser using a silicon waveguide as the gain medium and has a clear threshold at 9 W peak pump pulse power and a slope efficiency of 8.5%.
Journal ArticleDOI

Third-order nonlinearities in silicon at telecom wavelengths

TL;DR: In this article, the two-photon absorption coefficient and Kerr coefficient of bulk crystalline silicon are determined near the telecommunication wavelengths of 1.3 and 1.55 μm using femtosecond pulses and a balanced Z-scan technique.
Journal ArticleDOI

1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+

TL;DR: In this paper, SiO2 films containing Si nanocrystals (nc-Si) and Er were studied and their photoluminescence properties were assigned to electron-hole recombination in nc-Si and the intra-4f transition in Er3+, respectively.
Related Papers (5)