scispace - formally typeset
Search or ask a question
Journal ArticleDOI

An analysis of pilot symbol assisted modulation for Rayleigh fading channels (mobile radio)

01 Nov 1991-IEEE Transactions on Vehicular Technology (IEEE)-Vol. 40, Iss: 4, pp 686-693
TL;DR: In this paper, the bit error rate in binary-phase-shift-keying (BPSK) and in quadrature phase-shift keying (QPSK), for a tight upper bound on the symbol error rate for 16-QAM was presented.
Abstract: The author presents pilot-symbol-assisted modulation (PSAM) on a solid analytical basis, a feature missing from previous work. Closed-form expressions are presented for the bit error rate (BER) in binary-phase-shift-keying (BPSK) and in quadrature-phase-shift-keying (QPSK), for a tight upper bound on the symbol error rate in 16 quadrature-amplitude-modulation (16-QAM), and for the optimized receiver coefficients. The error rates obtained are lower than for differential detection for any combination of signal-to-noise ratio (SNR) and Doppler spread, and the performance is within 1 dB of a perfect reference system under slow-fading conditions and within 3 dB when the Doppler spread is 5% of the symbol rate. >
Citations
More filters
Journal ArticleDOI
Siavash Alamouti1
TL;DR: This paper presents a simple two-branch transmit diversity scheme that provides the same diversity order as maximal-ratio receiver combining (MRRC) with one transmit antenna, and two receive antennas.
Abstract: This paper presents a simple two-branch transmit diversity scheme. Using two transmit antennas and one receive antenna the scheme provides the same diversity order as maximal-ratio receiver combining (MRRC) with one transmit antenna, and two receive antennas. It is also shown that the scheme may easily be generalized to two transmit antennas and M receive antennas to provide a diversity order of 2M. The new scheme does not require any bandwidth expansion or any feedback from the receiver to the transmitter and its computation complexity is similar to MRRC.

13,706 citations

Book
01 Jan 2005

9,038 citations

BookDOI
01 Jan 2001
TL;DR: This book presents the first comprehensive treatment of Monte Carlo techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection.
Abstract: Monte Carlo methods are revolutionizing the on-line analysis of data in fields as diverse as financial modeling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survival of the fittest, have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practitioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris-XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning. Neil Gordon obtained a Ph.D. in Statistics from Imperial College, University of London in 1993. He is with the Pattern and Information Processing group at the Defence Evaluation and Research Agency in the United Kingdom. His research interests are in time series, statistical data analysis, and pattern recognition with a particular emphasis on target tracking and missile guidance.

6,574 citations

Journal ArticleDOI
TL;DR: An overview of progress in the area of multiple input multiple output (MIMO) space-time coded wireless systems is presented and the state of the art in channel modeling and measurements is presented, leading to a better understanding of actual MIMO gains.
Abstract: This paper presents an overview of progress in the area of multiple input multiple output (MIMO) space-time coded wireless systems. After some background on the research leading to the discovery of the enormous potential of MIMO wireless links, we highlight the different classes of techniques and algorithms proposed which attempt to realize the various benefits of MIMO including spatial multiplexing and space-time coding schemes. These algorithms are often derived and analyzed under ideal independent fading conditions. We present the state of the art in channel modeling and measurements, leading to a better understanding of actual MIMO gains. Finally, the paper addresses current questions regarding the integration of MIMO links in practical wireless systems and standards.

2,488 citations

Journal ArticleDOI
28 Apr 1996
TL;DR: There is a constant power gap between the spectral efficiency of the proposed technique and the channel capacity, and this gap is a simple function of the required bit-error rate (BER).
Abstract: We propose a variable-rate and variable-power MQAM modulation scheme for high-speed data transmission over fading channels. We first review results for the Shannon capacity of fading channels with channel side information, where capacity is achieved using adaptive transmission techniques. We then derive the spectral efficiency of our proposed modulation. We show that there is a constant power gap between the spectral efficiency of our proposed technique and the channel capacity, and this gap is a simple function of the required bit-error rate (BER). In addition, using just five or six different signal constellations, we achieve within 1-2 dB of the maximum efficiency using unrestricted constellation sets. We compute the rate at which the transmitter needs to update its power and rate as a function of the channel Doppler frequency for these constellation sets. We also obtain the exact efficiency loss for smaller constellation sets, which may be required if the transmitter adaptation rate is constrained by hardware limitations. Our modulation scheme exhibits a 5-10-dB power gain relative to variable-power fixed-rate transmission, and up to 20 dB of gain relative to nonadaptive transmission. We also determine the effect of channel estimation error and delay on the BER performance of our adaptive scheme. We conclude with a discussion of coding techniques and the relationship between our proposed modulation and Shannon capacity.

2,355 citations


Cites background or methods from "An analysis of pilot symbol assiste..."

  • ...Although the estimation error variance for some estimation methods in Rayleigh fading has been obtained [ 25 ], analytic and/or empirical distributions for estimation error are generally unknown....

    [...]

  • ...The effect of imperfect AGC for nonadaptive MQAM using pilot-symbol-assisted modulation (PSAM) in Rayleigh fading was studied in [ 25 ], [42]....

    [...]

  • ...In Rayleigh fading, this bound on estimation error can be achieved using the pilot-symbol-assisted estimation technique described in [ 25 ] with appropriate choice of parameters.1 Finally, hardware constraints and pulse-shaping considerations may dictate how often the transmitter can change its rate and/or power....

    [...]

  • ...Even so, the estimation error can be kept within this range using the PSAM estimation technique described in [ 25 ] with appropriate choice of parameters (pilot symbol power, spacing, and interpolation length as a function of the channel Doppler)....

    [...]

  • ...Pilot symbols used for channel estimation will also reduce spectral efficiency, particularly for rapidly varying channels, where the pilot symbols must be sent frequently [ 25 ]....

    [...]

References
More filters
Book
01 Jan 1983

25,017 citations

01 Nov 1985
TL;DR: This month's guest columnist, Steve Bible, N7HPR, is completing a master’s degree in computer science at the Naval Postgraduate School in Monterey, California, and his research area closely follows his interest in amateur radio.
Abstract: Spread Spectrum It’s not just for breakfast anymore! Don't blame me, the title is the work of this month's guest columnist, Steve Bible, N7HPR (n7hpr@tapr.org). While cruising the net recently, I noticed a sudden bump in the number of times Spread Spectrum (SS) techniques were mentioned in the amateur digital areas. While QEX has discussed SS in the past, we haven't touched on it in this forum. Steve was a frequent cogent contributor, so I asked him to give us some background. Steve enlisted in the Navy in 1977 and became a Data Systems Technician, a repairman of shipboard computer systems. In 1985 he was accepted into the Navy’s Enlisted Commissioning Program and attended the University of Utah where he studied computer science. Upon graduation in 1988 he was commissioned an Ensign and entered Nuclear Power School. His subsequent assignment was onboard the USS Georgia, a trident submarine stationed in Bangor, Washington. Today Steve is a Lieutenant and he is completing a master’s degree in computer science at the Naval Postgraduate School in Monterey, California. His areas of interest are digital communications, amateur satellites, VHF/UHF contesting, and QRP. His research area closely follows his interest in amateur radio. His thesis topic is Multihop Packet Radio Routing Protocol Using Dynamic Power Control. Steve is also the AMSAT Area Coordinator for the Monterey Bay area. Here's Steve, I'll have some additional comments at the end.

8,781 citations

Book
01 Jan 1982
TL;DR: In this article, the authors describe the characteristics of mobile radio signals and apply statistical communication theory to propagation and received signal characteristics, and provide a discussion of system performance and how to evaluate a new system.
Abstract: From the Publisher: This authoritative work was written to be the bible for advanced commercial mobile phone systems and military mobile communications systems. Emphasizing how to study and analyze mobile communications problems,the book thoroughly explains how to design a mobile radio communication system. Introductory material describes existing systems,bridging the gap for students unfamiliar with the field. The characteristics of mobile radio signals are covered,applying statistical communication theory to propagation and received signal characteristics. Functional design is introduced,and a discussion of system performance included to explain how to evaluate a new system. The author uses both theory and experiments to support practical design and development of systems in the microwave frequency ranges configured for high-capacity mobile telephone and data communications.

1,012 citations

Journal ArticleDOI
TL;DR: TCMP is a novel modulation strategy for Rician fading channels that multiplexes a time domain pilot sequence with trellis-coded data to permit coherent detection and is shown to provide remarkably robust performance in the presence of fading.
Abstract: The authors describe TCMP, a novel modulation strategy for Rician fading channels that multiplexes a time domain pilot sequence with trellis-coded data to permit coherent detection. This technique is shown to provide remarkably robust performance in the presence of fading. It is also shown that, when choosing trellis codes for fading channels, time diversity is of greater important than asymptotic coding gain. The motivation for studying this strategy is to find signaling schemes for transmitting data at a 4.8 kb/s rate over a mobile satellite channel with 5-kHz channel spacing. >

255 citations

Proceedings ArticleDOI
S. Sampei, T. Sunaga1
01 May 1989
TL;DR: In this paper, a Rayleigh fading compensation method for 16-QAM was proposed, where second-order interpolation was used for the fading compensation, and the degradation due to the proposed fading compensation was about 2 dB.
Abstract: The authors propose a novel Rayleigh fading compensation method for 16 quadrature amplitude modulation (16QAM). The optimum parameters for 16QAM with a transmission rate of 16 k symbol/s, the BER (bit error rate) performance, and the interference performance are determined by computer simulation. It is shown that second-order interpolation is suitable for the fading compensation method. In the case of 16 k-symbol/s transmission, the optimum frame length is 16 symbols. The degradation due to the proposed fading compensation method is about 2 dB. The BER performance under Rayleigh fading environments at f/sub d/ >

141 citations