scispace - formally typeset
Search or ask a question
Journal ArticleDOI

An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets

01 Jul 2003-NeuroImage (Academic Press Inc.)-Vol. 19, Iss: 3, pp 1233-1239
TL;DR: This paper provides a powerful method of probing fMRI data using automatically generated masks based on lobar anatomy, cortical and subcortical anatomy, and Brodmann areas based on an automated atlas-based masking technique.
About: This article is published in NeuroImage.The article was published on 2003-07-01. It has received 4998 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: A new, MATLAB based toolbox for the SPM2 software package is introduced which enables the integration of probabilistic cytoarchitectonic maps and results of functional imaging studies and an easy-to-use tool for the integrated analysis of functional and anatomical data in a common reference space.

3,911 citations

Journal ArticleDOI
TL;DR: The results indicate that the CompCor method increases the sensitivity and selectivity of fcMRI analysis, and show a high degree of interscan reliability for many fc MRI measures.
Abstract: Resting state functional connectivity reveals intrinsic, spontaneous networks that elucidate the functional architecture of the human brain. However, valid statistical analysis used to identify such networks must address sources of noise in order to avoid possible confounds such as spurious correlations based on non-neuronal sources. We have developed a functional connectivity toolbox Conn (www.nitrc.org/projects/conn) that implements the component-based noise correction method (CompCor) strategy for physiological and other noise source reduction, additional removal of movement, and temporal covariates, temporal filtering and windowing of the residual blood oxygen level-dependent (BOLD) contrast signal, first-level estimation of multiple standard functional connectivity magnetic resonance imaging (fcMRI) measures, and second-level random-effect analysis for resting state as well as task-related data. Compared to methods that rely on global signal regression, the CompCor noise reduction method all...

3,388 citations


Cites methods from "An automated method for neuroanatom..."

  • ...…practices, including individual mask image volumes [where an ROI is defined by all voxels with values above zero, e.g., WFU pickatlas files (Maldjian et al., 2003) or functional mask files defined using SPM save func- tionality], text files (listing Montreal Neurological Institute (MNI)…...

    [...]

Journal ArticleDOI
TL;DR: A meta-analysis of functional magnetic resonance imaging and positron emission tomography studies of posttraumatic stress disorder, social anxiety disorder, specific phobia, and fear conditioning in healthy individuals provided neuroimaging evidence for common brain mechanisms in anxiety disorders and normal fear.
Abstract: Objective: The study of human anxiety disorders has benefited greatly from functional neuroimaging approaches. Individual studies, however, vary greatly in their findings. The authors searched for common and disorder-specific functional neurobiological deficits in several anxiety disorders. The authors also compared these deficits to the neural systems engaged during anticipatory anxiety in healthy subjects. Method: Functional magnetic resonance imaging and positron emission tomography studies of posttraumatic stress disorder (PTSD), social anxiety disorder, specific phobia, and fear conditioning in healthy individuals were compared by quantitative meta-analysis. Included studies compared negative emotional processing to baseline, neutral, or positive emotion conditions. Results: Patients with any of the three disorders consistently showed greater activity than matched comparison subjects in the amygdala and insula, structures linked to negative emotional responses. A similar pattern was observed during f...

2,848 citations


Cites methods from "An automated method for neuroanatom..."

  • ...To directly compare the disorders, we constructed regions-ofinterest using the WFU PickAtlas (65), including those in the amygdala, insula, and thalamus....

    [...]

Journal ArticleDOI
TL;DR: The results suggest that participation in MBSR is associated with changes in gray matter concentration in brain regions involved in learning and memory processes, emotion regulation, self-referential processing, and perspective taking.
Abstract: article i nfo Therapeutic interventions that incorporate training in mindfulness meditation have become increasingly popular, but to date little is known about neural mechanisms associated with these interventions. Mindfulness-Based Stress Reduction (MBSR), one of the most widely used mindfulness training programs, has been reported to produce positive effects on psychological well-being and to ameliorate symptoms of a number of disorders. Here, we report a controlled longitudinal study to investigate pre-post changes in brain gray matter concentration attributable to participation in an MBSR program. Anatomical magnetic resonance (MR) images from 16 healthy, meditation-naive participants were obtained before and after they underwent the 8-week program. Changes in gray matter concentration were investigated using voxel-based morphometry, and compared with a waiting list control group of 17 individuals. Analyses in a priori regions of interest confirmed increases in gray matter concentration within the left hippocampus. Whole brain analyses identified increases in the posterior cingulate cortex, the temporo-parietal junction, and the cerebellum in the MBSR group compared with the controls. The results suggest that participation in MBSR is associated with changes in gray matter concentration in brain regions involved in learning and memory processes, emotion regulation, self-referential processing, and perspective taking.

1,461 citations


Cites methods from "An automated method for neuroanatom..."

  • ...The ROI contained the bilateral hippocampi and bilateral insulae and was created using the WFU Pickatlas software (Maldjian et al., 2003) and based on the parcellation of Tzourio-Mazoyer et al. (2002)....

    [...]

Journal ArticleDOI
TL;DR: Among patients, the magnitude of MPFC task suppression negatively correlated with default connectivity, suggesting an association between the hyperactivation and hyperconnectivity in schizophrenia.
Abstract: We examined the status of the neural network mediating the default mode of brain function, which typically exhibits greater activation during rest than during task, in patients in the early phase of schizophrenia and in young first-degree relatives of persons with schizophrenia. During functional MRI, patients, relatives, and controls alternated between rest and performance of working memory (WM) tasks. As expected, controls exhibited task-related suppression of activation in the default network, including medial prefrontal cortex (MPFC) and posterior cingulate cortex/precuneus. Patients and relatives exhibited significantly reduced task-related suppression in MPFC, and these reductions remained after controlling for performance. Increased task-related MPFC suppression correlated with better WM performance in patients and relatives and with less psychopathology in all 3 groups. For WM task performance, patients and relatives had greater activation in right dorsolateral prefrontal cortex (DLPFC) than controls. During rest and task, patients and relatives exhibited abnormally high functional connectivity within the default network. The magnitudes of default network connectivity during rest and task correlated with psychopathology in the patients. Further, during both rest and task, patients exhibited reduced anticorrelations between MPFC and DLPFC, a region that was hyperactivated by patients and relatives during WM performance. Among patients, the magnitude of MPFC task suppression negatively correlated with default connectivity, suggesting an association between the hyperactivation and hyperconnectivity in schizophrenia. Hyperactivation (reduced task-related suppression) of default regions and hyperconnectivity of the default network may contribute to disturbances of thought in schizophrenia and risk for the illness.

1,325 citations


Cites background from "An automated method for neuroanatom..."

  • ...Cluster-level inferences for all between-group analyses were restricted to a priori anatomical ROIs as defined by Wake Forest University Pickatlas (36, 37) [default areas (n 10): MPFC (BA10) and PCC/precuneus (BA30, BA31, and BA7); task-related areas (n 9): right DLPFC (BA9 and BA46)]....

    [...]

  • ...by Wake Forest University Pickatlas (36, 37) [default areas (n 10): MPFC...

    [...]

  • ...A whole-brain ANOVA revealed significant differences among the groups in MPFC [F (2, 36) 9....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a general approach that accommodates most forms of experimental layout and ensuing analysis (designed experiments with fixed effects for factors, covariates and interaction of factors).
Abstract: + Abstract: Statistical parametric maps are spatially extended statistical processes that are used to test hypotheses about regionally specific effects in neuroimaging data. The most established sorts of statistical parametric maps (e.g., Friston et al. (1991): J Cereb Blood Flow Metab 11:690-699; Worsley et al. 119921: J Cereb Blood Flow Metab 12:YOO-918) are based on linear models, for example ANCOVA, correlation coefficients and t tests. In the sense that these examples are all special cases of the general linear model it should be possible to implement them (and many others) within a unified framework. We present here a general approach that accommodates most forms of experimental layout and ensuing analysis (designed experiments with fixed effects for factors, covariates and interaction of factors). This approach brings together two well established bodies of theory (the general linear model and the theory of Gaussian fields) to provide a complete and simple framework for the analysis of imaging data. The importance of this framework is twofold: (i) Conceptual and mathematical simplicity, in that the same small number of operational equations is used irrespective of the complexity of the experiment or nature of the statistical model and (ii) the generality of the framework provides for great latitude in experimental design and analysis.

9,614 citations

Book
01 Jan 1988
TL;DR: Direct and Indirect Radiologic Localization Reference System: Basal Brain Line CA-CP Cerebral Structures in Three-Dimensional Space Practical Examples for the Use of the Atlas in Neuroradiologic Examinations Three- Dimensional Atlas of a Human Brain Nomenclature-Abbreviations Anatomic Index Conclusions.
Abstract: Direct and Indirect Radiologic Localization Reference System: Basal Brain Line CA-CP Cerebral Structures in Three-Dimensional Space Practical Examples for the Use of the Atlas in Neuroradiologic Examinations Three-Dimensional Atlas of a Human Brain Nomenclature-Abbreviations Anatomic Index Conclusions.

9,491 citations

Journal ArticleDOI
TL;DR: A general technique that facilitates nonlinear spatial (stereotactic) normalization and image realignment is presented that minimizes the sum of squares between two images following non linear spatial deformations and transformations of the voxel (intensity) values.
Abstract: This paper concerns the spatial and intensity transformations that map one image onto another. We present a general technique that facilitates nonlinear spatial (stereotactic) normalization and image realignment. This technique minimizes the sum of squares between two images following nonlinear spatial deformations and transformations of the voxel (intensity) values. The spatial and intensity transformations are obtained simultaneously, and explicitly, using a least squares solution and a series of linearising devices. The approach is completely noninteractive (automatic), nonlinear, and noniterative. It can be applied in any number of dimensions. Various applications are considered, including the realignment of functional magnetic resonance imaging (MRI) time-series, the linear (affine) and nonlinear spatial normalization of positron emission tomography (PET) and structural MRI images, the coregistration of PET to structural MRI, and, implicitly, the conjoining of PET and MRI to obtain high resolution functional images. © 1995 Wiley-Liss, Inc.

3,715 citations

Journal ArticleDOI
TL;DR: When used in concert with authors' deeper knowledge of an experiment, the TD system provides consistent and comprehensive labels for brain activation foci, which is better than that of the expert group.
Abstract: An automated coordinate-based system to retrieve brain labels from the 1988 Talairach Atlas, called the Talairach Daemon (TD), was previously introduced (Lancaster et al., 1997). In the present study, the TD system and its 3-D database of labels for the 1988 Talairach atlas were tested for labeling of functional activation foci. TD system labels were compared with author-designated labels of activation coordinates from over 250 published functional brain-mapping studies and with manual atlas-derived labels from an expert group using a subset of these activation coordinates. Automated labeling by the TD system compared well with authors' labels, with a 70% or greater label match averaged over all locations. Author-label matching improved to greater than 90% within a search range of 65 mm for most sites. An adaptive grey matter (GM) range-search utility was evaluated using individual activations from the M1 mouth region (30 subjects, 52 sites). It provided an 87% label match to Brodmann area labels (B A4&B A 6) within a search range of 65 mm. Using the adaptive GM range search, the TD system's overall match with authors' labels (90%) was better than that of the expert group (80%). When used in concert with authors' deeper knowledge of an experiment, the TD system provides consistent and comprehensive labels for brain activation foci. Additional suggested applications of the TD system include interactive labeling, anatomical grouping of activation foci, lesion-deficit analysis, and neuroanatomy education. Hum. Brain Mapping 10:120 -131, 2000. © 2000 Wiley-Liss, Inc.

3,380 citations

Journal ArticleDOI
TL;DR: A 3‐D model‐based segmentation method is presented in this paper for the completely automatic identification and delineation of gross anatomical structures of the human brain based on their appearance in magnetic resonance images (MRI).
Abstract: Explicit segmentation is required for many forms of quantitative neuroanatomic analysis However, manual methods are time-consuming and subject to errors in both accuracy and reproducibility (precision) A 3-D model-based segmentation method is presented in this paper for the completely automatic identification and delineation of gross anatomical structures of the human brain based on their appearance in magnetic resonance images (MRI) The approach depends on a general, iterative, hierarchical non-linear registration procedure and a 3-D digital model of human brain anatomy that contains both volumetric intensity-based data and a geometric atlas Here, the traditional segmentation strategy is inverted: instead of matching geometric contours from and idealized atlas directly to the MRI data, segmentation is achieved by identifying the non-linear spatial transformation that best maps corresponding intensity-based features between a model image and a new MRI brain volume When completed, atlas contours defined on the model image are mapped through the same transformation to segment and label individual structures in the new data set Using manually segmented sturcture boundaries for comparison, measures of volumetric difference and volumetric overlap were less than 2% and better than 97% for realistic brain phantom data, and less than 10% and better than 85%, respectively, for human MRI data This compares favorably to intra-observer variability estimates of 49% and 87%, respectively The procedure performs well, is objective and its implementation robust The procedure requires no manual intervention, and is thus applicable to studies of large numbers of subjects The general method for non-linear image matching is also useful for non-linear mapping of brain data sets into stereotaxic space if the target volume is already in stereotaxic space © 1995 Wiley-Liss, Inc

1,003 citations