scispace - formally typeset
Open accessJournal ArticleDOI: 10.1021/ACS.EST.0C06421

An Ecosystem-Scale Flux Measurement Strategy to Assess Natural Climate Solutions.

04 Mar 2021-Environmental Science & Technology (American Chemical Society)-Vol. 55, Iss: 6, pp 3494-3504
Abstract: Eddy covariance measurement systems provide direct observation of the exchange of greenhouse gases between ecosystems and the atmosphere, but have only occasionally been intentionally applied to quantify the carbon dynamics associated with specific climate mitigation strategies. Natural climate solutions (NCS) harness the photosynthetic power of ecosystems to avoid emissions and remove atmospheric carbon dioxide (CO2), sequestering it in biological carbon pools. In this perspective, we aim to determine which kinds of NCS strategies are most suitable for ecosystem-scale flux measurements and how these measurements should be deployed for diverse NCS scales and goals. We find that ecosystem-scale flux measurements bring unique value when assessing NCS strategies characterized by inaccessible and hard-to-observe carbon pool changes, important non-CO2 greenhouse gas fluxes, the potential for biophysical impacts, or dynamic successional changes. We propose three deployment types for ecosystem-scale flux measurements at various NCS scales to constrain wide uncertainties and chart a workable path forward: "pilot", "upscale", and "monitor". Together, the integration of ecosystem-scale flux measurements by the NCS community and the prioritization of NCS measurements by the flux community, have the potential to improve accounting in ways that capture the net impacts, unintended feedbacks, and on-the-ground specifics of a wide range of emerging NCS strategies.

... read more

Topics: Greenhouse gas (52%)

5 results found

Journal ArticleDOI: 10.1029/2021JG006276
David Y. Hollinger1, Eric A. Davidson2, Shawn Fraver3, H. Hughes3  +5 moreInstitutions (5)
Abstract: A long-standing goal of ecology has been to understand the cycling of carbon in forests. This has taken on new urgency with the need to address a rapidly changing climate. Forests serve as longterm stores for atmospheric CO2, but their continued ability to take up new carbon is dependent on future changes in climate and other factors such as age. We have been measuring many aspects of carbon cycling at an unmanaged evergreen forest in central Maine, USA, for over 25 years. Here we use these data to address questions about the magnitude and control of carbon fluxes and quantify flows and uncertainties between the different pools. A key issue was to assess whether recent climate change and an aging tree population were reducing annual C storage. Total ecosystem C stocks determined from inventory and quantitative soil pits were about 23,300 g C m−2 with 46% in live trees, and 48% in the soil. Annual biomass increment in trees at Howland Forest averaged 161 ± 23 g C m−2 yr−1, not significantly different from annual net ecosystem production (NEP = −NEE) of 211 ± 40 g C m−2 y−1 measured by eddy covariance. Unexpectedly, there was a small but significant trend of increasing C uptake through time in the eddy flux data. This was despite the period of record including some of the most climate-extreme years in the last 125. We find a surprising lack of influence of climate variability on annual carbon storage in this mature forest.

... read more

Topics: Eddy covariance (56%), Climate change (54%), Carbon cycle (54%) ... read more

4 Citations

Open accessJournal ArticleDOI: 10.5194/AMT-14-6929-2021
Stefan Metzger1, Stefan Metzger2, David Durden2, Sreenath Paleri1  +8 moreInstitutions (6)
Abstract: . The observing system design of multidisciplinary field measurements involves a variety of considerations on logistics, safety, and science objectives. Typically, this is done based on investigator intuition and designs of prior field measurements. However, there is potential for considerable increases in efficiency, safety, and scientific success by integrating numerical simulations in the design process. Here, we present a novel numerical simulation–environmental response function (NS–ERF) approach to observing system simulation experiments that aids surface–atmosphere synthesis at the interface of mesoscale and microscale meteorology. In a case study we demonstrate application of the NS–ERF approach to optimize the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19). During CHEESEHEAD19 pre-field simulation experiments, we considered the placement of 20 eddy covariance flux towers, operations for 72 h of low-altitude flux aircraft measurements, and integration of various remote sensing data products. A 2 h high-resolution large eddy simulation created a cloud-free virtual atmosphere for surface and meteorological conditions characteristic of the field campaign domain and period. To explore two specific design hypotheses we super-sampled this virtual atmosphere as observed by 13 different yet simultaneous observing system designs consisting of virtual ground, airborne, and satellite observations. We then analyzed these virtual observations through ERFs to yield an optimal aircraft flight strategy for augmenting a stratified random flux tower network in combination with satellite retrievals. We demonstrate how the novel NS–ERF approach doubled CHEESEHEAD19's potential to explore energy balance closure and spatial patterning science objectives while substantially simplifying logistics. Owing to its modular extensibility, NS–ERF lends itself to optimizing observing system designs also for natural climate solutions, emission inventory validation, urban air quality, industry leak detection, and multi-species applications, among other use cases.

... read more

Topics: Microscale meteorology (54%)

Open accessJournal ArticleDOI: 10.3389/FAGRO.2021.741557
22 Oct 2021-
Abstract: Rice is a staple food and primary source of calories for much of the world. However, rice can be a dietary source of toxic metal(loid)s to humans, and its cultivation creates atmospheric greenhouse gas emissions and requires high water use. Because rice production consumes a significant amount of natural resources and is a large part of the global agricultural economy, increasing its sustainability could have substantial societal benefits. There are opportunities for more sustainable field production through a combination of silicon (Si) management and conservation irrigation practices. As a Si-rich soil amendment, rice husks can limit arsenic and cadmium uptake, while also providing plant vigor in drier soil conditions. Thus, husk addition and conservation irrigation may be more effective to attenuate the accumulation of toxic metal(loid)s, manage water usage and lower climate impacts when implemented together than when either is implemented separately. This modified field production system would take advantage of rice husks, which are an underutilized by-product of milled rice that is widely available near rice farm sites, and have ~10% Si content. Husk application could, alongside alternate wetting and drying or furrow irrigation management, help resolve multiple sustainability challenges in rice production: (1) limit arsenic and cadmium accumulation in rice; (2) minimize greenhouse gas emissions from rice production; (3) decrease irrigation water use; (4) improve nutrient use efficiency; (5) utilize a waste product of rice processing; and (6) maintain plant-accessible soil Si levels. This review presents the scientific basis for a shift in rice production practices and considers complementary rice breeding efforts. It then examines socio-technical considerations for how such a shift in production practices could be implemented by farmers and millers together and may bring rice production closer to a bio-circular economy. This paper’s purpose is to advocate for a changed rice production method for consideration by community stakeholders, including producers, millers, breeders, extension specialists, supply chain organizations, and consumers, while highlighting remaining research and implementation questions.

... read more


107 results found

Open accessJournal ArticleDOI: 10.1126/SCIENCE.1155121
Gordon B. Bonan1Institutions (1)
13 Jun 2008-Science
Abstract: The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.

... read more

Topics: Effects of global warming (62%), Global warming (62%), Climate commitment (61%) ... read more

3,804 Citations

Journal ArticleDOI: 10.1038/NATURE03972
Philippe Ciais, Markus Reichstein1, Nicolas Viovy, A. Granier  +29 moreInstitutions (5)
22 Sep 2005-Nature
Abstract: Future climate warming is expected to enhance plant growth in temperate ecosystems and to increase carbon sequestration. But although severe regional heatwaves may become more frequent in a changing climate their impact on terrestrial carbon cycling is unclear. Here we report measurements of ecosystem carbon dioxide fluxes, remotely sensed radiation absorbed by plants, and country-level crop yields taken during the European heatwave in 2003.We use a terrestrial biosphere simulation model to assess continental-scale changes in primary productivity during 2003, and their consequences for the net carbon balance. We estimate a 30 per cent reduction in gross primary productivity over Europe, which resulted in a strong anomalous net source of carbon dioxide (0.5 Pg Cyr21) to the atmosphere and reversed the effect of four years of net ecosystem carbon sequestration. Our results suggest that productivity reduction in eastern and western Europe can be explained by rainfall deficit and extreme summer heat, respectively. We also find that ecosystem respiration decreased together with gross primary productivity, rather than accelerating with the temperature rise. Model results, corroborated by historical records of crop yields, suggest that such a reduction in Europe's primary productivity is unprecedented during the last century. An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.

... read more

Topics: Carbon sequestration (59%), Ecosystem respiration (58%), Productivity (ecology) (55%) ... read more

2,978 Citations

Open accessJournal ArticleDOI: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
Dennis D. Baldocchi1, Eva Falge2, Lianhong Gu1, Richard J. Olson3  +22 moreInstitutions (18)
Abstract: FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70°N to 30°S. FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, Second, the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide information for validating computations of net primary productivity, evaporation, and energy absorption that are being generated by sensors mounted on the NASA Terra satellite. Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil–plant–atmosphere trace gas exchange models. Findings so far include 1) net CO 2 exchange of temperate broadleaved forests increases by about 5.7 g C m −2 day −1 for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem CO 2 exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of CO 2 flux density exhibits peaks at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature of net CO 2 exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor flux densities.

... read more

Topics: FluxNet (71%), Ecosystem respiration (54%), Flux footprint (53%) ... read more

2,948 Citations

Journal ArticleDOI: 10.1046/J.1365-2486.2003.00629.X
Dennis D. Baldocchi1Institutions (1)
Abstract: The eddy covariance technique ascertains the exchange rate of CO2 across the interface between the atmosphere and a plant canopy by measuring the covariance between fluctuations in vertical wind velocity and CO2 mixing ratio. Two decades ago, the method was employed to study CO2 exchange of agricultural crops under ideal conditions during short field campaigns. During the past decade the eddy covariance method has emerged as an important tool for evaluating fluxes of carbon dioxide between terrestrial ecosystems and the atmosphere over the course of a year, and more. At present, the method is being applied in a nearly continuous mode to study carbon dioxide and water vapor exchange at over a hundred and eighty field sites, worldwide. The objective of this review is to assess the eddy covariance method as it is being applied by the global change community on increasingly longer time scales and over less than ideal surfaces. The eddy covariance method is most accurate when the atmospheric conditions (wind, temperature, humidity, CO2) are steady, the underlying vegetation is homogeneous and it is situated on flat terrain for an extended distance upwind. When the eddy covariance method is applied over natural and complex landscapes or during atmospheric conditions that vary with time, the quantification of CO2 exchange between the biosphere and atmosphere must include measurements of atmospheric storage, flux divergence and advection. Averaging CO2 flux measurements over long periods (days to year) reduces random sampling error to relatively small values. Unfortunately, data gaps are inevitable when constructing long data records. Data gaps are generally filled with values produced from statistical and empirical models to produce daily and annual sums of CO2 exchange. Filling data gaps with empirical estimates do not introduce significant bias errors because the empirical algorithms are derived from large statistical populations. On the other hand, flux measurement errors can be biased at night when winds are light and intermittent. Nighttime bias errors tend to produce an underestimate in the measurement of ecosystem respiration. Despite the sources of errors associated with long-term eddy flux measurements, many investigators are producing defensible estimates of annual carbon exchange. When measurements come from nearly ideal sites the error bound on the net annual exchange of CO2 is less than ±50 g C m−2 yr−1. Additional confidence in long-term measurements is growing because investigators are producing values of net ecosystem productivity that are converging with independent values produced by measuring changes in biomass and soil carbon, as long as the biomass inventory studies are conducted over multiple years.

... read more

Topics: Eddy covariance (67%), FluxNet (61%), Covariance (57%) ... read more

2,024 Citations

Open accessJournal ArticleDOI: 10.1126/SCIENCE.1184984
Christian Beer1, Markus Reichstein1, Enrico Tomelleri1, Philippe Ciais2  +20 moreInstitutions (13)
13 Aug 2010-Science
Abstract: Terrestrial gross primary production (GPP) is the largest global CO(2) flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 +/- 8 petagrams of carbon per year (Pg C year(-1)) using eddy covariance flux data and various diagnostic models. Tropical forests and savannahs account for 60%. GPP over 40% of the vegetated land is associated with precipitation. State-of-the-art process-oriented biosphere models used for climate predictions exhibit a large between-model variation of GPP's latitudinal patterns and show higher spatial correlations between GPP and precipitation, suggesting the existence of missing processes or feedback mechanisms which attenuate the vegetation response to climate. Our estimates of spatially distributed GPP and its covariation with climate can help improve coupled climate-carbon cycle process models.

... read more

Topics: FluxNet (54%), Eddy covariance (53%), Primary production (53%)

1,749 Citations