scispace - formally typeset
Search or ask a question
Book ChapterDOI

An Effective Comparative Study Among the Different Geometry of Electrodes in Performing the Tasks in Digital Microfluidic Biochips

TL;DR: In this paper, the structural and behavioral aspects of the architectures as mentioned earlier and throwing sight to the enhancement of two primary modular operations such as droplet routing and mixing are addressed.
Abstract: “Digital microfluidic biochip (DMFB)” emanates as one of the most promising technologies in the discipline of “Lab-on-a-Chip (LoC)” environment, which encompasses several application areas like biology, electronics, chemistry, etc., by replacing the conventional laboratory equipment. The geometry of digital microfluidic biochips is realized on a 2D grid with regular three-, four- and six-sided polygons. In this paper, we address the structural and behavioural aspects of the architectures as mentioned earlier and throwing sight to the enhancement of two primary modular operations such as droplet routing and mixing. Furthermore, a complete and tangible comparative study is performed efficiently based on these three design methodologies.
References
More filters
Journal ArticleDOI
Richard B. Fair1
TL;DR: To understand the opportunities and limitations of EWD microfluidics, this paper looks at the development of lab-on-chip applications in a hierarchical approach.
Abstract: The suitability of electrowetting-on-dielectric (EWD) microfluidics for true lab-on-a-chip applications is discussed. The wide diversity in biomedical applications can be parsed into manageable components and assembled into architecture that requires the advantages of being programmable, reconfigurable, and reusable. This capability opens the possibility of handling all of the protocols that a given laboratory application or a class of applications would require. And, it provides a path toward realizing the true lab-on-a-chip. However, this capability can only be realized with a complete set of elemental fluidic components that support all of the required fluidic operations. Architectural choices are described along with the realization of various biomedical fluidic functions implemented in on-chip electrowetting operations. The current status of this EWD toolkit is discussed. However, the question remains: which applications can be performed on a digital microfluidic platform? And, are there other advantages offered by electrowetting technology, such as the programming of different fluidic functions on a common platform (reconfigurability)? To understand the opportunities and limitations of EWD microfluidics, this paper looks at the development of lab-on-chip applications in a hierarchical approach. Diverse applications in biotechnology, for example, will serve as the basis for the requirements for electrowetting devices. These applications drive a set of biomedical fluidic functions required to perform an application, such as cell lysing, molecular separation, or analysis. In turn, each fluidic function encompasses a set of elemental operations, such as transport, mixing, or dispensing. These elemental operations are performed on an elemental set of components, such as electrode arrays, separation columns, or reservoirs. Examples of the incorporation of these principles in complex biomedical applications are described.

1,094 citations

Journal ArticleDOI
TL;DR: This paper studies the effects of varying droplet aspect ratios on linear-array droplet mixers, and proposes mixing strategies applicable for both high and low aspect ratio systems, and presents a split-and-merge mixer that takes advantage of the ability to perform droplet splitting at these ratios.
Abstract: The mixing of analytes and reagents for a biological or chemical lab-on-a-chip is an important, yet difficult, microfluidic operation. As volumes approach the sub-nanoliter regime, the mixing of liquids is hindered by laminar flow conditions. An electrowetting-based linear-array droplet mixer has previously been reported. However, fixed geometric parameters and the presence of flow reversibility have prevented even faster droplet mixing times. In this paper, we study the effects of varying droplet aspect ratios (height ∶ diameter) on linear-array droplet mixers, and propose mixing strategies applicable for both high and low aspect ratio systems. An optimal aspect ratio for four electrode linear-array mixing was found to be 0.4, with a mixing time of 4.6 seconds. Mixing times were further reduced at this ratio to less than three seconds using a two-dimensional array mixer, which eliminates the effects of flow reversibility. For lower aspect ratio (≤0.2) systems, we present a split-and-merge mixer that takes advantage of the ability to perform droplet splitting at these ratios, resulting in a mixing time of less than two seconds.

491 citations

Journal ArticleDOI
TL;DR: The proposed top-down design-automation approach is expected to relieve biochip users from the burden of manual optimization of bioassays, time-consuming hardware design, and costly testing and maintenance procedures, and it will facilitate the integration of fluidic components with a microelectronic component in next-generation systems-on-chips (SOCs).
Abstract: Microfluidics-based biochips are soon expected to revolutionize clinical diagnosis, deoxyribonucleic acid (DNA) sequencing, and other laboratory procedures involving molecular biology. In contrast to continuous-flow systems that rely on permanently etched microchannels, micropumps, and microvalves, digital microfluidics offers a scalable system architecture and dynamic reconfigurability; groups of unit cells in a microfluidics array can be reconfigured to change their functionality during the concurrent execution of a set of bioassays. As more bioassays are executed concurrently on a biochip, system integration and design complexity are expected to increase dramatically. This paper presents an overview of an integrated system-level design methodology that attempts to address key issues in the synthesis, testing and reconfiguration of digital microfluidics-based biochips. Different actuation mechanisms for microfluidics-based biochips, and associated design-automation trends and challenges are also discussed. The proposed top-down design-automation approach is expected to relieve biochip users from the burden of manual optimization of bioassays, time-consuming hardware design, and costly testing and maintenance procedures, and it will facilitate the integration of fluidic components with a microelectronic component in next-generation systems-on-chips (SOCs).

253 citations

Book
03 May 2010
TL;DR: This book uses real-life bioassays as examples to lay out an automated design flow for creating microfluidic biochips and presents specialized pinconstrained design techniques for making bioch chips with a focus on cost and disposability.
Abstract: Microfluidics-based biochips combine electronics with biochemistry, providing access to new application areas in a wide variety of fields. Continued technological innovations are essential to assuring the future role of these chips in functional diversification in biotech, pharmaceuticals, and other industries.Revolutionary guidance on design, opti

56 citations

01 Jan 2011
TL;DR: By considering the dynamically reconfigurable nature of microfluidic operations, significant improvements can be obtained, decreasing the biochemical application completion times, reducing thus the biochip area and implementation costs.
Abstract: Microfluidic biochips are an alternative to conventional biochemical laboratories, and are able to integrate on-chip all the necessary functions for biochemical analysis. The " digital " biochips are manipulating liquids not as a continuous flow, but as discrete droplets on a two-dimensional array of electrodes. The main objective of this thesis is to develop top-down synthesis techniques for digital microfluidic biochips. So far, researchers have assumed that operations are executing on virtual modules of rectangular shape, formed by grouping adjacent electrodes, and which have a fixed placement on the microfluidic array. However, operations can actually execute by routing the droplets on any sequence of electrodes on the biochip. Thus, we have proposed a routing-based model of operation execution, and we have developed several associated synthesis approaches, which progressively relax the assumption that operations execute inside fixed rectangular modules. The proposed synthesis approaches consider that i) modules can dynamically move during their execution and ii) can have non-rectangular shapes. iii) We have relaxed the assumption that all electrodes are occupied during the operation execution, by taking into account the position of droplets inside modules. Finally, iv) we have eliminated the concept of virtual modules and have allowed the droplets to move on the chip on any route. In this context, we have also shown how contamination can be avoided. We have extensively evaluated the proposed approaches using several real-life case studies and synthetic benchmarks. The experiments show that by considering the dynamically reconfigurable nature of microfluidic operations, significant improvements can be obtained, decreasing the biochemical application completion times, reducing thus the biochip area and implementation costs. The thesis deals with optimization tools for the synthesis of digital microfluidic biochips, in an effort to offer the microfluidic community with the same level of support present in the semiconductors industry. viii Acknowledgements To all the people that inspired me throughout my life. Thank you! x Contents Summary i Resumé iii Preface v Papers included in the thesis vii Acknowledgements ix 1 Introduction 1 1.

16 citations