scispace - formally typeset
Search or ask a question
Journal Article•DOI•

An efficient approach for power delivery network design with closed-form expressions for parasitic interconnect inductances

08 May 2006-IEEE Transactions on Advanced Packaging (Institute of Electrical and Electronics Engineers)-Vol. 29, Iss: 2, pp 320-334
TL;DR: In this article, the authors proposed a closed-form expression for the parasitics associated with the interconnects of the decoupling capacitors of a dc power distribution network.
Abstract: Investigation of a dc power delivery network, consisting of a multilayer PCB using area fills for power and return, involves the distributed behavior of the power/ground planes and the parasitics associated with the lumped components mounted on it Full-wave methods are often employed to study the power integrity problem While full-wave methods can be accurate, they are time and memory consuming The cavity model of a rectangular structure has previously been employed to efficiently analyze the simultaneous switching noise (SSN) in the power distribution network However, a large number of modes in the cavity model are needed to accurately simulate the impedance associated with the vias, leading to computational inefficiency A fast approach is detailed herein to accelerate calculation of the summation associated with the higher-order modes Closed-form expressions for the parasitics associated with the interconnects of the decoupling capacitors are also introduced Combining the fast calculation of the cavity models of regularly shaped planar circuits, a segmentation method, and closed-form expressions for the parasitics, an efficient approach is proposed herein to analyze an arbitrary shaped power distribution network While it may take many hours for a full-wave method to do a single simulation, the proposed method can generally perform the simulation with good accuracy in several minutes Another advantage of the proposed method is that a SPICE equivalent circuit of the power distribution network can be derived This allows both frequency and transient responses to be done with SPICE simulation

Content maybe subject to copyright    Report

Citations
More filters
Journal Article•DOI•
TL;DR: In this article, the authors reviewed possible solutions based on decoupling or isolation for suppressing power distribution network (PDN) noise on package or printed circuit board (PCB) levels.
Abstract: Mitigating power distribution network (PDN) noise is one of the main efforts for power integrity (PI) design in high-speed or mixed-signal circuits. Possible solutions, which are based on decoupling or isolation concept, for suppressing PDN noise on package or printed circuit board (PCB) levels are reviewed in this paper. Keeping the PDN impedance very low in a wide frequency range, except at dc, by employing a shunt capacitors, which can be in-chip, package, or PCB levels, is the first priority way for PI design. The decoupling techniques including the planes structure, surface-mounted technology decoupling capacitors, and embedded capacitors will be discussed. The isolation approach that keeps part of the PDN at high impedance is another way to reduce the PDN noise propagation. Besides the typical isolation approaches such as the etched slots and filter, the new isolation concept using electromagnetic bandgap structures will also be discussed.

200 citations

Journal Article•DOI•
TL;DR: In this article, the state of the arts of IC, electronic package, and printed circuit board simulation and modeling technologies are summarized for both available structures [multilayered powerground planes and macromodeling of interconnect (INC)] and novel structures (nano-INCs and 3-D ICs based on through-silicon via technology).
Abstract: The ever-increasing demands of digital computing and wireless communication have been driving the semiconductor technology to change with each passing day. Modern electronic systems integrate more complex components and devices, which results in a very complex electromagnetic (EM) field environment. EM compatibility has become one of the major issues in ICs redesign, mainly due to the lack of efficient and accurate simulation tools and expertise on noise reduction and immunity improvement. This paper reviews the state of the arts of IC, electronic package, and printed circuit board simulation and modeling technologies. It summarizes the modeling technologies for both available structures [multilayered power-ground planes and macromodeling of interconnect (INC)] and novel structures (nano-INCs and 3-D ICs based on through-silicon via technology). It also illustrates the trends of simulation and modeling technologies in EM compatibility, signal integrity, and power integrity.

166 citations

Journal Article•DOI•
TL;DR: In this article, the via-plate capacitance for a via transition to a multilayer printed circuit board is evaluated analytically in terms of higher order parallel-plate modes.
Abstract: The via-plate capacitance for a via transition to a multilayer printed circuit board is evaluated analytically in terms of higher order parallel-plate modes. The Green's function in a bounded coaxial cavity for a concentric magnetic ring current is first derived by introducing reflection coefficients for cylindrical waves at the inner and outer cavity walls. These walls can be perfect electric conductor (PEC)/perfect magnetic conductor(PMC) or a nonreflective perfectly matched layer. By further assuming a magnetic frill current on the via-hole in the metal plate, an analytical formula is derived for the via barrel-plate capacitance by summing the higher order modes in the bounded coaxial cavity. The convergence of the formula with the number of modes, as well as with the radius of the outer PEC/PMC wall is discussed. The analytical formula is validated by both quasi-static numerical methods and measurements. Furthermore, the formula allows the investigation of the frequency dependence of the via-plate capacitance, which is not possible with quasi-static methods.

137 citations

Journal Article•DOI•
TL;DR: In this paper, an irregular plate pair with multiple vias is analyzed by the segmentation method that divides the plate pair into a plate domain and via domains, all the parallel-plate modes are considered, while in the plate domain, only the propagating modes are included to account for the coupling among vias and the reflection from plate edges.
Abstract: An irregular plate pair with multiple vias is analyzed by the segmentation method that divides the plate pair into a plate domain and via domains. In the via domains, all the parallel-plate modes are considered, while in the plate domain, only the propagating modes are included to account for the coupling among vias and the reflection from plate edges. Boundary conditions at both vias and plate edges are enforced and all parasitic components of via circuit are expressed analytically in terms of parallel-plate modes. The work presented in this paper indicates that a previous physics-based via circuit model from intuition is a low-frequency approximation. Analytical and numerical simulations, as well as measurements, have been used to validate the intrinsic via circuit model.

92 citations

Journal Article•DOI•
Jaemin Kim1, Woojin Lee1, Yujeong Shim1, Jongjoo Shim1, Kiyeong Kim1, Jun So Pak1, Joungho Kim1 •
TL;DR: In this paper, a new modeling method for estimating the impedance properties in a chip-package hierarchical power distribution network (PDN) is proposed, which decomposes the chip package hierarchical PDN into several structures, independently calculate the decomposed structures, and extract the whole structure's impedance by using a segmentation method.
Abstract: In this paper, a new modeling method for estimating the impedance properties in a chip-package hierarchical power distribution network (PDN) is proposed. The key ideas of the proposed modeling method are to decompose the chip-package hierarchical PDN into several structures, independently calculate the decomposed structures, and extract the whole structure's impedance by using a segmentation method. For the impedance calculations of the independently decomposed structures, a new method based on proposed analytic expressions is introduced for a chip level PDN, a resonant cavity model is used for a package level PDN, and equivalent circuit models are used for interconnections. The proposed method has been successfully verified by comparisons with measurements using a fabricated test vehicle in the frequency domain range up to 20 GHz, and it shows improved accuracy as well as computational superiority compared to EM simulations. Finally, the impedance properties in a chip-package hierarchical PDN are thoroughly investigated and analyzed.

91 citations

References
More filters
Book•
01 Apr 1990

10,459 citations

Journal Article•DOI•
TL;DR: In this paper, the electric field integral equation (EFIE) is used with the moment method to develop a simple and efficient numerical procedure for treating problems of scattering by arbitrarily shaped objects.
Abstract: The electric field integral equation (EFIE) is used with the moment method to develop a simple and efficient numerical procedure for treating problems of scattering by arbitrarily shaped objects. For numerical purposes, the objects are modeled using planar triangular surfaces patches. Because the EFIE formulation is used, the procedure is applicable to both open and closed surfaces. Crucial to the numerical formulation is the development of a set of special subdomain-type basis functions which are defined on pairs of adjacent triangular patches and yield a current representation free of line or point charges at subdomain boundaries. The method is applied to the scattering problems of a plane wave illuminated flat square plate, bent square plate, circular disk, and sphere. Excellent correspondence between the surface current computed via the present method and that obtained via earlier approaches or exact formulations is demonstrated in each case.

4,835 citations

Book•
01 Jan 1960
TL;DR: In this paper, the authors present a model for waveguide decomposition in terms of waveguide discontinuities and waveguides and cavities, and apply it to artificial dielectrics.
Abstract: Preface. Basic Electromagnetic Theory. Green's Functions. Transverse Electromagnetic Waves. Transmission Lines. Waveguides and Cavities. Inhomogeneously Filled Waveguides and Dielectric Resonators. Excitation of Waveguides and Cavities. Variational Methods for Waveguide Discontinuities. Periodic Structures. Integral Transform and Function-Theoretic Techniques. Surface Waveguides. Artificial Dielectrics. Mathematical Appendix. Name Index. Subject Index. About the Author.

4,393 citations

Book•
05 Apr 2022
TL;DR: In this paper, the authors present the Phasor Solution Method for calculating per-unit-length parameters and Crosstalk of multiconductor transmission lines for EMC systems.
Abstract: Preface. 1. Introduction to Electromagnetic Compatibility (EMC). 2. EMC Requirements for Electronic Systems. 3. Signal Spectra-The Relationship Between theTime Domain and the Frequency Domain. 4. Transmission Lines and Signal Integrity. 5. Nonideal Behavior of Components. 6. Conducted Emissions and Susceptibility. 7. Antennas. 8. Radiated Emissions and Susceptibility. 9. Crosstalk. 10. Shielding. 11. System Design for EMC. Appendix A: The Phasor Solution Method. Appendix B: The Electromagnetic Field Equations and Waves. Appendix C: Computer Codes for Calculating the Per-Unit-Length Parameters and Crosstalk of Multiconductor Transmission Lines. Appendix D: Spice (PSPICE) Tutorial. Index.

2,064 citations

Book•
01 Jan 1981
TL;DR: This authoritative compilation of formulas and tables simplifies the design of inductors for electrical engineers features a single simple formula for virtually every type of inductor, together with tables from which essential numerical factors may be interpolated.
Abstract: This authoritative compilation of formulas and tables simplifies the design of inductors for electrical engineers. It features a single simple formula for virtually every type of inductor, together with tables from which essential numerical factors may be interpolated. An esteemed reference, it belongs in the library of every electrical engineer. 1946 edition.

1,296 citations