scispace - formally typeset
Open AccessJournal ArticleDOI

An Efficient Technique for Double Faults Detection and their Locations Identification in Digital Microfluidic Biochip

Reads0
Chats0
TLDR
An aspect of fast fault diagnosis appliance for perceiving double faults and recognizing the fault locations within the biochip is introduced and the suggested result outpoured that the propound technique is competent, efficacious as well as delineate signifying improvement over the surviving method.
Abstract
Progress of digital microfluidic biochip (DMFB) confronts for the defective and specious electrodes. Not only these hinder the routing of droplets but also the completion time of assay is influenced by those defective electrodes. As Microfluidic-based biochips are broadly used in the revolution of medical diagnosis, gigantic parallel DNA analysis, automatic drug discovery and real-time biomolecular recognition including numerous safety-critical applications, this biochip definitely responsible for appropriate and accurate result. Prior accepting it for perceptive purposes the microfluidic biochip must confirm its precision and robustness. In this article, an aspect of fast fault diagnosis appliance for perceiving double faults and recognizing the fault locations within the biochip is introduced. If the biochip is defect free then the proposed approach computes the traversal time as well. The suggested result outpoured that the propound technique is competent, efficacious as well as delineate signifying improvement over the surviving method. Furthermore this paper added expedient reconfiguration contrivance.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings Article

Mining for empty spaces in large data sets

TL;DR: This work considers the problem of finding all maximal empty rectangles in large, two-dimensional data sets, and introduces a novel, scalable algorithm for finding all such rectangles, and extends the algorithm to find all maximalempty hyper-rectangles in a multi-dimensional space.
References
More filters
Journal ArticleDOI

The origins and the future of microfluidics

TL;DR: The manipulation of fluids in channels with dimensions of tens of micrometres — microfluidics — has emerged as a distinct new field that has the potential to influence subject areas from chemical synthesis and biological analysis to optics and information technology.
Journal ArticleDOI

Microfluidic diagnostic technologies for global public health

TL;DR: The developing world does not have access to many of the best medical diagnostic technologies; they were designed for air-conditioned laboratories, refrigerated storage of chemicals, constant supply of calibrators and reagents, stable electrical power, highly trained personnel and rapid transportation of samples.
Journal ArticleDOI

An integrated nanoliter DNA analysis device

TL;DR: A device was developed that uses microfabricated fluidic channels, heaters, temperature sensors, and fluorescence detectors to analyze nanoliter-size DNA samples to facilitate the use of DNA analysis in applications such as rapid medical diagnostics and point-of-use agricultural testing.
Journal ArticleDOI

An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids

TL;DR: This work presents an alternative paradigm--a fully integrated and reconfigurable droplet-based "digital" microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids, and demonstrates reliable and repeatable high-speed transport of microdroplets.

Microfluidic Large Scale Integration

TL;DR: High-density microfluidic chips that contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers are developed to construct the microfluidity analog of a comparator array and a microfluidsic memory storage device whose behavior resembles random-access memory.
Related Papers (5)