scispace - formally typeset
Search or ask a question
Journal ArticleDOI

An efficient Z-scheme CdS/g-C3N4 nano catalyst in methyl orange photodegradation: Focus on the scavenging agent and mechanism

01 Aug 2021-Journal of Molecular Liquids (Elsevier)-Vol. 335, pp 116543
TL;DR: In this paper, the authors focused on estimating the band gap energy (Eg) for various electronic transitions in the CdS/g-C3N4 coupled sample and the potential positions of the valence and conduction bands.
About: This article is published in Journal of Molecular Liquids.The article was published on 2021-08-01. It has received 62 citations till now. The article focuses on the topics: Methyl orange & Photodegradation.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors summarize the recent progress of nanostructured modified double hydroxides (LDHs) materials, their classification, synthesis, and a detailed discussion on their characterization techniques.
Abstract: Layered double hydroxides (LDHs) are emerging catalyst materials with inner layer water molecules and higher anion exchange capacity. They have been extensively used as catalyst materials owing to their high specific surface area, environmental friendliness, lower cost, and non-toxicity. However, the lower surface area and leaching of metal ions from LDHs composites reduce the process efficiency of the catalyst. Modifying the LDHs materials with other materials can improve the surface properties of the composite and enhance the catalytic performance. Herein, this review aims to summarize the recent progress of nanostructured modified LDHs materials, their classification, synthesis, and a detailed discussion on their characterization techniques. Further, this study also discusses the application of nanostructured modified LDHs materials as catalysts in advanced oxidation process (AOPs) for various organic pollutants removal.

99 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarize the recent progress of nanostructured modified double hydroxides (LDHs) materials, their classification, synthesis, and a detailed discussion on their characterization techniques.
Abstract: Layered double hydroxides (LDHs) are emerging catalyst materials with inner layer water molecules and higher anion exchange capacity. They have been extensively used as catalyst materials owing to their high specific surface area, environmental friendliness, lower cost, and non-toxicity. However, the lower surface area and leaching of metal ions from LDHs composites reduce the process efficiency of the catalyst. Modifying the LDHs materials with other materials can improve the surface properties of the composite and enhance the catalytic performance. Herein, this review aims to summarize the recent progress of nanostructured modified LDHs materials, their classification, synthesis, and a detailed discussion on their characterization techniques. Further, this study also discusses the application of nanostructured modified LDHs materials as catalysts in advanced oxidation process (AOPs) for various organic pollutants removal.

99 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate how to use the K-M function and apply it thoroughly to the determination of the E g of TiO2 semiconductor powder (pressed at different thicknesses) from diffuse reflectance spectroscopy (DRS) measurements.

92 citations

Journal ArticleDOI
TL;DR: In this paper , the authors demonstrate how to use the K-M function and apply it thoroughly to the determination of the optical band gap energy (Eg) of TiO2 semiconductor powder (pressed at different thicknesses) from diffuse reflectance spectroscopy (DRS) measurements.

92 citations

Journal ArticleDOI
TL;DR: In this paper , the authors focused on ultrasound-assisted electrochemical (US/electrochemical) processes, so-called sonoelectrochemical processes of various organic pollutants, and discussed the strategies to avoid passivation, enhanced generation of reactive oxygen species, and mixing effect.
Abstract: The electrochemical advanced oxidation processes (EAOPs) have received significant attention among the many other water and wastewater treatment technologies. However, achieving a desirable removal effect with a single technique is frequently difficult. Therefore, the integration of ultrasound technique with other processes such as electrocoagulation, electro-Fenton, and electrooxidation is a critical way to achieve effective organic pollutants decomposition from wastewater. This review paper is focused on ultrasound-assisted electrochemical (US/electrochemical) processes, so-called sonoelectrochemical processes of various organic pollutants. Emphasis was given to recently published articles for discussing the results and trends in this research area. The use of ultrasound and integration with electrochemical processes has a synergistic impact owing to the physical and chemical consequences of cavitation, resulting in enhancing the mineralization of organic pollutants. Various types of sonoelectrochemical reactors (batch and continuous) employed in the US/electrochemical processes were reviewed. In addition, the strategies to avoid passivation, enhanced generation of reactive oxygen species, and mixing effect are reviewed. Finally, concluding remarks and future perspectives on this research topic are also explored and recommended.

69 citations

References
More filters
Book
01 Jan 1973
TL;DR: CRC handbook of chemistry and physics, CRC Handbook of Chemistry and Physics, CRC handbook as discussed by the authors, CRC Handbook for Chemistry and Physiology, CRC Handbook for Physics,
Abstract: CRC handbook of chemistry and physics , CRC handbook of chemistry and physics , کتابخانه مرکزی دانشگاه علوم پزشکی تهران

52,268 citations

Journal ArticleDOI
TL;DR: In this article, the rate constants for over 3500 reaction are tabulated, including reaction with molecules, ions and other radicals derived from inorganic and organic solutes, and the corresponding radical anions, ⋅O− and eaq−, have been critically pulse radiolysis, flash photolysis and other methods.
Abstract: Kinetic data for the radicals H⋅ and ⋅OH in aqueous solution,and the corresponding radical anions, ⋅O− and eaq−, have been critically pulse radiolysis, flash photolysis and other methods. Rate constants for over 3500 reaction are tabulated, including reaction with molecules, ions and other radicals derived from inorganic and organic solutes.

9,887 citations

Journal ArticleDOI
TL;DR: In this article, the optical constants of amorphous Ge were determined for the photon energies from 0.08 to 1.6 eV, and the absorption is due to k-conserving transitions of holes between the valence bands as in p-type crystals.
Abstract: The optical constants of amorphous Ge are determined for the photon energies from 0.08 to 1.6 eV. From 0.08 to 0.5 eV, the absorption is due to k-conserving transitions of holes between the valence bands as in p-type crystals; the spin-orbit splitting is found to be 0.20 and 0.21 eV in non-annealed, and annealed samples respectively. The effective masses of the holes in the three bands are 0.49 m (respectively 0.43 m); 0.04 m, and 0.08 m. An absorption band is observed below the main absorption edge (at 300 °K the maximum of this band is at 0.86 eV); the absorption in this band increases with increasing temperature. This band is considered to be due to excitons bound to neutral acceptors, and these are presumably the same ones that play a decisive role in the transport properties and which are considered to be associated with vacancies. The absorption edge has the form: ω2ϵ2∼(hω−Eg)2 (Eg = 0.88 eV at 300 °K). This suggests that the optical transitions conserve energy but not k vector, and that the densities of states near the band extrema have the same energy-dependence as in crystalline Ge. A simple theory describing this situation is proposed, and comparison of it with the experimental results leads to an estimate of the localization of the conduction-band wavefunctions.

8,184 citations

Journal ArticleDOI
16 Jul 2009-Langmuir
TL;DR: The results clearly indicate that the metal-free g-C(3)N(4) has good performance in photodegradation of organic pollutant.
Abstract: The g-C3N4 photocatalyst was synthesized by directly heating the low-cost melamine. The methyl orange dye (MO) was selected as a photodegrading goal to evaluate the photocatalytic activity of as-prepared g-C3N4. The comparison experiments indicate that the photocatalytic activity of g-C3N4 can be largely improved by the Ag loading. The strong acid radical ion (SO42− or NO3−) can promote the degrading rate of MO for g-C3N4 photocatalysis system. The MO degradation over the g-C3N4 is mainly attributed to the photoreduction process induced by the photogenerated electrons. Our results clearly indicate that the metal-free g-C3N4 has good performance in photodegradation of organic pollutant.

2,362 citations