scispace - formally typeset
Search or ask a question
Journal ArticleDOI

An evaluation of four years of nitrous oxide fluxes after application of ammonium nitrate and urea fertilisers measured using the eddy covariance method

TL;DR: In this paper, the authors presented the first long-term N2O eddy covariance dataset measured from a working farm, which was used over a four-year period to measure fluxes of the greenhouse gas nitrous oxide (N2O) from an intensively managed grazed grassland, to which regular applications of ammonium nitrate or urea fertilisers were spread, for two years each at the field site.
About: This article is published in Agricultural and Forest Meteorology.The article was published on 2020-01-15 and is currently open access. It has received 33 citations till now. The article focuses on the topics: Eddy covariance & Ammonium nitrate.
Citations
More filters
01 Jan 2012
Abstract: It has been formerly recognised that increasing relative humidity in the sampling line of closed-path eddy-covariance systems leads to increasing attenuation of water vapour turbulent fluctuations, resulting in strong latent heat flux losses. This occurrence has been analyzed for very long (50 m) and long (7 m) sampling lines. To date, only a few analytical or in situ analyses have been proposed to quantify and correct such effects, among which the comprehensive method by Ibrom et al. (2007) was proved effective for the very long sampling line of a forest eddy-covariance setup. Here we analyze data from eddy-covariance systems featuring short (4 m) and very short (1 m) sampling lines running at the same clover field and show that relative humidity effects persist also for these setups, and should not be neglected. Starting from the work of Ibrom and co-workers, we propose a mixed method, a composite of two existing approaches, for correcting eddy-covariance fluxes. By means of a comparison with parallel open-path measurements, we show that the mixed method leads to an improved estimation of latent heat fluxes, with respect to the method described by Ibrom et al. (2007). The quantification and correction method proposed here is deemed applicable to closed-path systems featuring a broad range of sampling lines, and indeed applicable also to passive gases as a special case. The methods described in this paper are incorporated, as processing options, in the free and open-source eddy-covariance software packages ECO2S and EddyPro.

99 citations

Journal ArticleDOI
14 Apr 2021-Agronomy
TL;DR: In this paper, the principal factors from peer-reviewed literature affecting N2O emissions from agricultural soils, by grouping the factors into three categories: environmental, management and measurement, are summarized.
Abstract: Nitrous oxide (N2O) is a long-lived greenhouse gas that contributes to global warming. Emissions of N2O mainly stem from agricultural soils. This review highlights the principal factors from peer-reviewed literature affecting N2O emissions from agricultural soils, by grouping the factors into three categories: environmental, management and measurement. Within these categories, each impact factor is explained in detail and its influence on N2O emissions from the soil is summarized. It is also shown how each impact factor influences other impact factors. Process-based simulation models used for estimating N2O emissions are reviewed regarding their ability to consider the impact factors in simulating N2O. The model strengths and weaknesses in simulating N2O emissions from managed soils are summarized. Finally, three selected process-based simulation models (Daily Century (DAYCENT), DeNitrification-DeComposition (DNDC), and Soil and Water Assessment Tool (SWAT)) are discussed that are widely used to simulate N2O emissions from cropping systems. Their ability to simulate N2O emissions is evaluated by describing the model components that are relevant to N2O processes and their representation in the model.

81 citations

Journal ArticleDOI
TL;DR: This paper discusses how to design experiments using static chambers to better account for this variability and reduce the uncertainty of N2 O emission estimates, and presents best practice recommendations for chamber installation and sampling protocols to reduce further uncertainty.
Abstract: Adequately estimating soil nitrous oxide (N2O) emissions using static chambers is challenging due to the high spatial variability and episodic nature of these fluxes. This paper discusses how static chamber N2O experiments can be designed, and protocols implemented, to better account for this variability and reduce the uncertainty of N2O emission estimates. It is part of a series of papers in this special issue, each discussing a particular aspect of N2O chamber methodology. Aspects of experimental design and sampling affected by spatial variability include site selection, and chamber layout, size and areal coverage. Where used, treatment application adds a further level of spatial variability. Time of day, frequency and duration of sampling (both in terms of individual chamber closures and overall experiment duration) affect the temporal variability captured. In addition, we present best practice recommendations for experimental chamber installation and sampling protocols to minimise the introduction of further uncertainty. To obtain the best N2O emission estimates, resources should be allocated to minimise the overall uncertainty in line with experiment objectives. In some cases, this will mean prioritising individual flux measurements and increasing their accuracy and precision by, for example, collecting ≥4 headspace samples during each chamber closure. However, where N2O fluxes are exceptionally spatially variable, for example, in heterogeneous agricultural landscapes, such as uneven and woody grazed pastures, using available resources to deploy more chambers with fewer headspace samples per chamber may be beneficial. Similarly, for particularly episodic N2O fluxes, generated for example by irrigation or freeze-thaw cycles, increasing chamber sampling frequency will improve the accuracy and reduce the uncertainty of temporally interpolated N2O fluxes

34 citations

Journal ArticleDOI
TL;DR: The Global N2O Database was created to serve as a repository for these datasets as well as become a resource for publicly available data and analytical advances as discussed by the authors, which can be used to assess mitigation solutions.

24 citations

References
More filters
Book
30 May 2017
TL;DR: In this article, a simple linear model is proposed to describe the geometry of linear models, and a general linear model specification in R is presented. But the theory of linear model theory is not discussed.
Abstract: LINEAR MODELS A simple linear model Linear models in general The theory of linear models The geometry of linear modelling Practical linear models Practical modelling with factors General linear model specification in R Further linear modelling theory Exercises GENERALIZED LINEAR MODELS The theory of GLMs Geometry of GLMs GLMs with R Likelihood Exercises INTRODUCING GAMS Introduction Univariate smooth functions Additive models Generalized additive models Summary Exercises SOME GAM THEORY Smoothing bases Setting up GAMs as penalized GLMs Justifying P-IRLS Degrees of freedom and residual variance estimation Smoothing Parameter Estimation Criteria Numerical GCV/UBRE: performance iteration Numerical GCV/UBRE optimization by outer iteration Distributional results Confidence interval performance Further GAM theory Other approaches to GAMs Exercises GAMs IN PRACTICE: mgcv Cherry trees again Brain imaging example Air pollution in Chicago example Mackerel egg survey example Portuguese larks example Other packages Exercises MIXED MODELS and GAMMs Mixed models for balanced data Linear mixed models in general Linear mixed models in R Generalized linear mixed models GLMMs with R Generalized additive mixed models GAMMs with R Exercises APPENDICES A Some matrix algebra B Solutions to exercises Bibliography Index

8,393 citations

Journal ArticleDOI
08 Aug 2002-Nature
TL;DR: A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society.
Abstract: A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society. Agriculturalists are the principal managers of global useable lands and will shape, perhaps irreversibly, the surface of the Earth in the coming decades. New incentives and policies for ensuring the sustainability of agriculture and ecosystem services will be crucial if we are to meet the demands of improving yields without compromising environmental integrity or public health.

6,569 citations

Journal ArticleDOI
02 Oct 2009-Science
TL;DR: In this paper, the ozone depletion potential-weighted anthropogenic emissions of N2O with those of other ozone-depleting substances were compared, and it was shown that N 2O emission currently is the single most important ozone-destroying emission and is expected to remain the largest throughout the 21st century.
Abstract: By comparing the ozone depletion potential-weighted anthropogenic emissions of N2O with those of other ozone-depleting substances, we show that N2O emission currently is the single most important ozone-depleting emission and is expected to remain the largest throughout the 21st century. N2O is unregulated by the Montreal Protocol. Limiting future N2O emissions would enhance the recovery of the ozone layer from its depleted state and would also reduce the anthropogenic forcing of the climate system, representing a win-win for both ozone and climate.

3,363 citations

Journal Article
01 Jan 2009-Nature
TL;DR: Nitrous oxide emission currently is the single most important ozone-depleting emission and is expected to remain the largest throughout the 21st century, and N2O is unregulated by the Montreal Protocol, which would enhance the recovery of the ozone layer from its depleted state and reduce the anthropogenic forcing of the climate system.

3,069 citations