scispace - formally typeset
Search or ask a question
Proceedings Article

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

TL;DR: The Vision Transformer (ViT) as discussed by the authors uses a pure transformer applied directly to sequences of image patches to perform very well on image classification tasks, achieving state-of-the-art results on ImageNet, CIFAR-100, VTAB, etc.
Abstract: While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.

Content maybe subject to copyright    Report

Citations
More filters
Posted Content
TL;DR: Zhang et al. as mentioned in this paper proposed a novel Mutual-Transformer Fusion Network (MTFNet) for RGB-D SOD, which contains two main modules, Focal Feature Extractor (FFE) and Mutual Transformer Fusion(MTF) to extract more accurate CNN features for RGB and depth images by introducing a novel pixel-level focal regularization to guide CNN feature extractor.
Abstract: Salient object detection (SOD) on RGB-D images is an active problem in computer vision. The main challenges for RGB-D SOD problem are how to 1) extract the accurate features for RGB and Depth image data with clutter background or poor image quality and 2) explore the complementary information between RGB and Depth image data. To address these challenges, we propose a novel Mutual-Transformer Fusion Network (MTFNet) for RGB-D SOD. MTFNet contains two main modules, $i.e.$, Focal Feature Extractor (FFE) and Mutual-Transformer Fusion (MTF). FFE aims to extract the more accurate CNN features for RGB and Depth images by introducing a novel pixel-level focal regularization to guide CNN feature extractor. MTF is designed to deeply exploit the multi-modal interaction between RGB and Depth images on both coarse and fine scales. The main benefit of MTF is that it conducts the learning of intra-modality and inter-modality simultaneously and thus can achieve communication across different modalities more directly and sufficiently. Comprehensive experimental results on six public benchmarks demonstrate the superiority of our proposed MTFNet.
Posted Content
TL;DR: FQ-ViT as mentioned in this paper proposes Log-Int-Softmax (LIS) to sustain the extreme non-uniform distribution of the attention maps while simplifying inference by using 4-bit quantization and the BitShift operator.
Abstract: Network quantization significantly reduces model inference complexity and has been widely used in real-world deployments. However, most existing quantization methods have been developed and tested mainly on Convolutional Neural Networks (CNN), and suffer severe degradation when applied to Transformer-based architectures. In this work, we present a systematic method to reduce the performance degradation and inference complexity of Quantized Transformers. In particular, we propose Powers-of-Two Scale (PTS) to deal with the serious inter-channel variation of LayerNorm inputs in a hardware-friendly way. In addition, we propose Log-Int-Softmax (LIS) that can sustain the extreme non-uniform distribution of the attention maps while simplifying inference by using 4-bit quantization and the BitShift operator. Comprehensive experiments on various Transformer-based architectures and benchmarks show that our methods outperform previous works in performance while using even lower bit-width in attention maps. For instance, we reach 85.17% Top-1 accuracy with ViT-L on ImageNet and 51.4 mAP with Cascade Mask R-CNN (Swin-S) on COCO. To our knowledge, we are the first to achieve comparable accuracy degradation (~1%) on fully quantized Vision Transformers. Code is available at https://github.com/linyang-zhh/FQ-ViT.
Posted Content
TL;DR: In this article, the authors evaluate the efficiency of action recognition models in depth across multiple devices and train a wide range of video transformers under the same conditions, and conclude that composite transformers that augment convolutional backbones are best at lightweight action recognition, despite lacking accuracy.
Abstract: In video action recognition, transformers consistently reach state-of-the-art accuracy. However, many models are too heavyweight for the average researcher with limited hardware resources. In this work, we explore the limitations of video transformers for lightweight action recognition. We benchmark 13 video transformers and baselines across 3 large-scale datasets and 10 hardware devices. Our study is the first to evaluate the efficiency of action recognition models in depth across multiple devices and train a wide range of video transformers under the same conditions. We categorize current methods into three classes and show that composite transformers that augment convolutional backbones are best at lightweight action recognition, despite lacking accuracy. Meanwhile, attention-only models need more motion modeling capabilities and stand-alone attention block models currently incur too much latency overhead. Our experiments conclude that current video transformers are not yet capable of lightweight action recognition on par with traditional convolutional baselines, and that the previously mentioned shortcomings need to be addressed to bridge this gap. Code to reproduce our experiments will be made publicly available.
Posted Content
TL;DR: Zhang et al. as mentioned in this paper proposed a visual-linguistic long-tailed recognition framework, termed VL-LTR, and conduct empirical studies on the benefits of introducing text modality for LTR.
Abstract: Deep learning-based models encounter challenges when processing long-tailed data in the real world. Existing solutions usually employ some balancing strategies or transfer learning to deal with the class imbalance problem, based on the image modality. In this work, we present a visual-linguistic long-tailed recognition framework, termed VL-LTR, and conduct empirical studies on the benefits of introducing text modality for long-tailed recognition (LTR). Compared to existing approaches, the proposed VL-LTR has the following merits. (1) Our method can not only learn visual representation from images but also learn corresponding linguistic representation from noisy class-level text descriptions collected from the Internet; (2) Our method can effectively use the learned visual-linguistic representation to improve the visual recognition performance, especially for classes with fewer image samples. We also conduct extensive experiments and set the new state-of-the-art performance on widely-used LTR benchmarks. Notably, our method achieves 77.2% overall accuracy on ImageNet-LT, which significantly outperforms the previous best method by over 17 points, and is close to the prevailing performance training on the full ImageNet. Code shall be released.
Posted Content
TL;DR: In this article, a transformer-based neural architecture for StarCraft II (SC2) macromanagement tasks is proposed, which is able to capture patterns across very long time horizons, making them well suited for full game analysis.
Abstract: Inspired by the recent success of transformers in natural language processing and computer vision applications, we introduce a transformer-based neural architecture for two key StarCraft II (SC2) macromanagement tasks: global state and build order prediction. Unlike recurrent neural networks which suffer from a recency bias, transformers are able to capture patterns across very long time horizons, making them well suited for full game analysis. Our model utilizes the MSC (Macromanagement in StarCraft II) dataset and improves on the top performing gated recurrent unit (GRU) architecture in predicting global state and build order as measured by mean accuracy over multiple time horizons. We present ablation studies on our proposed architecture that support our design decisions. One key advantage of transformers is their ability to generalize well, and we demonstrate that our model achieves an even better accuracy when used in a transfer learning setting in which models trained on games with one racial matchup (e.g., Terran vs. Protoss) are transferred to a different one. We believe that transformers' ability to model long games, potential for parallelization, and generalization performance make them an excellent choice for StarCraft agents.
References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Proceedings ArticleDOI
11 Oct 2018
TL;DR: BERT as mentioned in this paper pre-trains deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers, which can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks.
Abstract: We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5 (7.7 point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

24,672 citations