scispace - formally typeset
Search or ask a question
Proceedings Article

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

TL;DR: The Vision Transformer (ViT) as discussed by the authors uses a pure transformer applied directly to sequences of image patches to perform very well on image classification tasks, achieving state-of-the-art results on ImageNet, CIFAR-100, VTAB, etc.
Abstract: While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.

Content maybe subject to copyright    Report

Citations
More filters
Posted Content
TL;DR: Zhang et al. as mentioned in this paper propose an end-to-end neural network-based approach to single image camera calibration, which directly estimates the camera parameters from an image and a set of line segments.
Abstract: Single image camera calibration is the task of estimating the camera parameters from a single input image, such as the vanishing points, focal length, and horizon line. In this work, we propose Camera calibration TRansformer with Line-Classification (CTRL-C), an end-to-end neural network-based approach to single image camera calibration, which directly estimates the camera parameters from an image and a set of line segments. Our network adopts the transformer architecture to capture the global structure of an image with multi-modal inputs in an end-to-end manner. We also propose an auxiliary task of line classification to train the network to extract the global geometric information from lines effectively. Our experiments demonstrate that CTRL-C outperforms the previous state-of-the-art methods on the Google Street View and SUN360 benchmark datasets.

6 citations

Proceedings ArticleDOI
14 May 2021
TL;DR: In this article, a transformer neural network was used to learn grain scattering features for material texture recognition using a 3D ultrasonic data cube to train the neural networks for texture analysis.
Abstract: Material texture recognition by estimating the grain size has been extensively used for characterization of material structures. Ultrasonic inspection can approximate material grain size nondestructively with advantages of one-sided measurement, high penetration depth and inspection accuracy. In ultrasonic testing, the energy of signal attenuates as ultrasonic signal propagates through the material. This attenuation is due to scattering and absorption, which are functions of the frequency and grain size distribution. Therefore, the attenuation and scattering of ultrasonic echoes can be used to evaluate grain size for microscopic texture. In this paper we propose to use the transformer neural networks to learn grain scattering features for material textures recognition. The transformer neural network utilizes the multi-head attention mechanism to substantially reduce the computation cost. An ultrasonic testbed platform is assembled to acquire the 3D ultrasonic data cube to train the neural networks for texture analysis. The 3D data cube consists of a sequence of 2D ultrasonic C-scan images and is obtained from three different heat-treated steel blocks. Several state-of-the-art machine learning algorithms, the deep Convolutional Neural Networks (CNNs) and Support Vector Machine (SVM) were trained and compared to classify the grain scattering textures of three heat-treated steel blocks. To build a data-efficient automatic system for ultrasonic nondestructive evaluation (NDE) applications, a self-attention based transformer neural networks: Ultrasonic Texture Recognition Vision Transformer: UTRV Transformer, was proposed to classify material textures with high testing accuracy of 96.15%.

6 citations

Posted Content
TL;DR: In this article, a thorough review of the main families of DL models recently developed for tabular data is presented, and two significant findings are revealed: the choice between GBDT and DL models highly depends on data and there is still no universally superior solution.
Abstract: The necessity of deep learning for tabular data is still an unanswered question addressed by a large number of research efforts. The recent literature on tabular DL proposes several deep architectures reported to be superior to traditional "shallow" models like Gradient Boosted Decision Trees. However, since existing works often use different benchmarks and tuning protocols, it is unclear if the proposed models universally outperform GBDT. Moreover, the models are often not compared to each other, therefore, it is challenging to identify the best deep model for practitioners. In this work, we start from a thorough review of the main families of DL models recently developed for tabular data. We carefully tune and evaluate them on a wide range of datasets and reveal two significant findings. First, we show that the choice between GBDT and DL models highly depends on data and there is still no universally superior solution. Second, we demonstrate that a simple ResNet-like architecture is a surprisingly effective baseline, which outperforms most of the sophisticated models from the DL literature. Finally, we design a simple adaptation of the Transformer architecture for tabular data that becomes a new strong DL baseline and reduces the gap between GBDT and DL models on datasets where GBDT dominates.

6 citations

Book ChapterDOI
TL;DR: HBA-U-Net as mentioned in this paper is a U-Net backbone enriched with hierarchical bottleneck attention for fovea and optic disc segmentation in the presence of a variety of retinal degenerative diseases.
Abstract: Fundus photography has routinely been used to document the presence and severity of retinal degenerative diseases such as age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR) in clinical practice, for which the fovea and optic disc (OD) are important retinal landmarks. However, the occurrence of lesions, drusen, and other retinal abnormalities during retinal degeneration severely complicates automatic landmark detection and segmentation. Here we propose HBA-U-Net: a U-Net backbone enriched with hierarchical bottleneck attention. The network consists of a novel bottleneck attention block that combines and refines self-attention, channel attention, and relative-position attention to highlight retinal abnormalities that may be important for fovea and OD segmentation in the degenerated retina. HBA-U-Net achieved state-of-the-art results on fovea detection across datasets and eye conditions (ADAM: Euclidean Distance (ED) of 25.4 pixels, REFUGE: 32.5 pixels, IDRiD: 32.1 pixels), on OD segmentation for AMD (ADAM: Dice Coefficient (DC) of 0.947), and on OD detection for DR (IDRiD: ED of 20.5 pixels). Our results suggest that HBA-U-Net may be well suited for landmark detection in the presence of a variety of retinal degenerative diseases.

6 citations

Journal ArticleDOI
TL;DR: In this article, a multi-view transformer model (MiT) is proposed for 3D/4D facial affect recognition, which incorporates patch and position embeddings from various patches of multi-views and uses them for learning various facial muscle movements to showcase an effective recognition performance.
Abstract: In this paper, we propose MiT: a novel multi-view transformer model 1 for 3D/4D facial affect recognition. MiT incorporates patch and position embeddings from various patches of multi-views and uses them for learning various facial muscle movements to showcase an effective recognition performance. We also propose a multi-view loss function that is not only gradient-friendly, and hence speeds up the gradient computation during back-propagation, but it also leverages the correlation associated with the underlying facial patterns among multi-views. Additionally, we offer multi-view weights that are trainable and learnable, and help substantially in training. Finally, we equip our model with distributed performance for faster learning and computational convenience. With the help of extensive experiments, we show that our model outperform the existing methods on widely-used datasets for 3D/4D FER.

5 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Proceedings ArticleDOI
11 Oct 2018
TL;DR: BERT as mentioned in this paper pre-trains deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers, which can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks.
Abstract: We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5 (7.7 point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

24,672 citations