scispace - formally typeset
Search or ask a question
Proceedings Article

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

TL;DR: The Vision Transformer (ViT) as discussed by the authors uses a pure transformer applied directly to sequences of image patches to perform very well on image classification tasks, achieving state-of-the-art results on ImageNet, CIFAR-100, VTAB, etc.
Abstract: While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.

Content maybe subject to copyright    Report

Citations
More filters
Posted Content
TL;DR: StreaMulT as discussed by the authors is a streaming multi-modal transformer, which relies on crossmodal attention and an augmented memory bank to process arbitrary long input sequences at training time and run in a streaming way at inference.
Abstract: This paper tackles the problem of processing and combining efficiently arbitrary long data streams, coming from different modalities with different acquisition frequencies. Common applications can be, for instance, long-time industrial or real-life systems monitoring from multimodal heterogeneous data (sensor data, monitoring report, images, etc.). To tackle this problem, we propose StreaMulT, a Streaming Multimodal Transformer, relying on cross-modal attention and an augmented memory bank to process arbitrary long input sequences at training time and run in a streaming way at inference. StreaMulT reproduces state-of-the-art results on CMU-MOSEI dataset, while being able to deal with much longer inputs than other models such as previous Multimodal Transformer.
Posted Content
TL;DR: In this paper, the authors present the technical details of their submission to the EPIC-Kitchens-100 Action Recognition Challenge 2021, which achieved a top-1 action recognition accuracy of 44.82% using only RGB.
Abstract: This report presents the technical details of our submission to the EPIC-Kitchens-100 Action Recognition Challenge 2021. To participate in the challenge we deployed spatio-temporal feature extraction and aggregation models we have developed recently: GSF and XViT. GSF is an efficient spatio-temporal feature extracting module that can be plugged into 2D CNNs for video action recognition. XViT is a convolution free video feature extractor based on transformer architecture. We design an ensemble of GSF and XViT model families with different backbones and pretraining to generate the prediction scores. Our submission, visible on the public leaderboard, achieved a top-1 action recognition accuracy of 44.82%, using only RGB.
Posted Content
TL;DR: This paper proposed a label synthesis teaching framework where the teacher randomly selects input teaching examples and then synthesizes suitable outputs (e.g., labels) for them, which can avoid costly example selection while still provably achieving exponential teachability.
Abstract: In this paper, we consider the problem of iterative machine teaching, where a teacher provides examples sequentially based on the current iterative learner. In contrast to previous methods that have to scan over the entire pool and select teaching examples from it in each iteration, we propose a label synthesis teaching framework where the teacher randomly selects input teaching examples (e.g., images) and then synthesizes suitable outputs (e.g., labels) for them. We show that this framework can avoid costly example selection while still provably achieving exponential teachability. We propose multiple novel teaching algorithms in this framework. Finally, we empirically demonstrate the value of our framework.
Posted Content
TL;DR: Zhang et al. as discussed by the authors proposed a novel saliency model integrating transformer components to CNNs to capture the long-range contextual information, and the proposed model achieves promising results in predicting saliency.
Abstract: Convolutional neural networks (CNNs) have significantly advanced computational modeling for saliency prediction. However, the inherent inductive biases of convolutional architectures cause insufficient long-range contextual encoding capacity, which potentially makes a saliency model less humanlike. Transformers have shown great potential in encoding long-range information by leveraging the self-attention mechanism. In this paper, we propose a novel saliency model integrating transformer components to CNNs to capture the long-range contextual information. Experimental results show that the new components make improvements, and the proposed model achieves promising results in predicting saliency.
Posted Content
TL;DR: Li et al. as mentioned in this paper proposed a lightweight end-to-end graph neural network (EV-VGCNN) for event-based classification, which uses voxel-wise vertices rather than traditional point-wise methods to incorporate the information from more points and introduces a multi-scale feature relational layer to extract semantic and motion cues from each vertex adaptively concerning its distances to neighbors.
Abstract: Event cameras report sparse intensity changes and hold noticeable advantages of low power consumption, high dynamic range, and high response speed for visual perception and understanding on portable devices. Event-based learning methods have recently achieved massive success on object recognition by integrating events into dense frame-based representations to apply traditional 2D learning algorithms. However, these approaches introduce much redundant information during the sparse-to-dense conversion and necessitate models with heavy-weight and large capacities, limiting the potential of event cameras on real-life applications. To address the core problem of balancing accuracy and model complexity for event-based classification models, we (1) construct graph representations for event data to utilize their sparsity nature better and design a lightweight end-to-end graph neural network (EV-VGCNN) for classification; (2) use voxel-wise vertices rather than traditional point-wise methods to incorporate the information from more points; (3) introduce a multi-scale feature relational layer (MFRL) to extract semantic and motion cues from each vertex adaptively concerning its distances to neighbors. Comprehensive experiments show that our approach advances state-of-the-art classification accuracy while achieving nearly 20 times parameter reduction (merely 0.84M parameters).
References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Proceedings ArticleDOI
11 Oct 2018
TL;DR: BERT as mentioned in this paper pre-trains deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers, which can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks.
Abstract: We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5 (7.7 point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

24,672 citations