scispace - formally typeset
Search or ask a question
Journal ArticleDOI

An improved energy aware distributed unequal clustering protocol for heterogeneous wireless sensor networks

TL;DR: An improved version of the energy aware distributed unequal clustering protocol (EADUC), by electing cluster heads considering number of nodes in the neighborhood in addition to the above two parameters, outperforms the existing protocols in terms of network lifetime in all the scenarios.
About: This article is published in Engineering Science and Technology, an International Journal.The article was published on 2016-06-01 and is currently open access. It has received 107 citations till now. The article focuses on the topics: Cluster analysis & Wireless sensor network.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive survey of various unequal clustering approaches with their objectives, characteristics etc., is presented and classifications are made and compared based on various cluster properties, Cluster Head (CH) properties and clustering process.

153 citations

Journal ArticleDOI
TL;DR: About 215 most important WSN clustering techniques are extracted, reviewed, categorized and classified based on clustering objectives and also the network properties such as mobility and heterogeneity, providing highly useful insights to the design of clustering Techniques in WSNs.

150 citations

Journal ArticleDOI
TL;DR: Simulation performance based results indicates the effectiveness of MEACBM routing protocols by comparing it with other contemporary cluster based routing protocols in terms of network lifetime, stability, throughput, number of CHs and number of dead nodes.
Abstract: Routing in Wireless Sensor Networks (WSNs) is the most significant and the challenging issue for the researchers in terms of enhancing its performance in terms of network lifetime, energy efficiency, scalability, connectivity, throughput, etc. They have the incredible capability to interact and gather data from any physical environment with help of routing protocols. Many routing protocols based solutions have been proposed in the recent years for accomplishing the preferred level of performance in WSNs for these issues. The hierarchical heterogeneous cluster based energy efficient routing protocols are more efficient as compared to flat and location based routing protocols due to the presence of nodes heterogeneity in terms of energy level of sensor nodes which enhances the lifetime of the network. The most recent trend that extensively enhances the functionality and the performance of WSNs is the use of mobile sensor nodes. In this paper, the authors proposed a novel concept regarding mobile sensor nodes is proposed called Mobile Energy Aware Cluster Based Multi-hop (MEACBM) routing protocol for hierarchical heterogeneous WSNs which selects CHs on the basis of newly proposed probability equation which selects only that sensor node as Cluster Head (CH) which has the highest energy among other sensor nodes by introducing a new term S(i).E in the equation. It considers hierarchical heterogeneous clustering considering three levels of sensor nodes; multi-hoping for inter-cluster communication and connectivity of sensor nodes within the whole network area. In MEACBM, after the deployment of sensor nodes and formation of clusters, the whole network area is divided into sectors and inside each sector a mobile sensor node is placed which act as Mobile Data Collector (MDC) for collecting data from CHs. This technique helps in significantly reducing the energy consumption of sensor nodes for transferring information to the Base Station (BS). Simulation performance based results indicates the effectiveness of MEACBM routing protocols by comparing it with other contemporary cluster based routing protocols in terms of network lifetime, stability, throughput, number of CHs and number of dead nodes.

89 citations

Journal Article
TL;DR: In this paper, the authors consider the problem of data propagation in wireless sensor networks and revisit the family of mixed strategy routing schemes and show that maximizing the lifespan, balancing the energy among individual sensors and maximizing the message flow in the network are equivalent.
Abstract: We consider the problem of data propagation in wireless sensor networks and revisit the family of mixed strategy routing schemes. We show that maximizing the lifespan, balancing the energy among individual sensors and maximizing the message flow in the network are equivalent. We propose a distributed and adaptive data propagation algorithm for balancing the energy among sensors in the network. The mixed routing algorithm we propose allows each sensor node to either send a message to one of its immediate neighbors, or to send it directly to the base station, the decision being based on a potential function depending on its remaining energy. By considering a simple model of the network and using a linear programming description of the message flow, we prove the strong result that an energy-balanced mixed strategy beats every other possible routing strategy in terms of lifespan maximization. Moreover, we provide sufficient conditions for ensuring the dynamic stability of the algorithm. The algorithm is inspired by the gradient-based routing scheme but by allowing to send messages directly to the base station we improve considerably the lifespan of the network. As a matter of fact, we show experimentally that our algorithm is close to optimal and that it even beats the best centralized multi-hop routing strategy.

89 citations

Journal ArticleDOI
TL;DR: A survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT,such as network heterogeneity and mobility is conducted.
Abstract: Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.

87 citations

References
More filters
Proceedings ArticleDOI
04 Jan 2000
TL;DR: The Low-Energy Adaptive Clustering Hierarchy (LEACH) as mentioned in this paper is a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network.
Abstract: Wireless distributed microsensor systems will enable the reliable monitoring of a variety of environments for both civil and military applications. In this paper, we look at communication protocols, which can have significant impact on the overall energy dissipation of these networks. Based on our findings that the conventional protocols of direct transmission, minimum-transmission-energy, multi-hop routing, and static clustering may not be optimal for sensor networks, we propose LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network. LEACH uses localized coordination to enable scalability and robustness for dynamic networks, and incorporates data fusion into the routing protocol to reduce the amount of information that must be transmitted to the base station. Simulations show the LEACH can achieve as much as a factor of 8 reduction in energy dissipation compared with conventional outing protocols. In addition, LEACH is able to distribute energy dissipation evenly throughout the sensors, doubling the useful system lifetime for the networks we simulated.

12,497 citations

01 Jan 2000
TL;DR: LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network, is proposed.
Abstract: Wireless distributed microsensor systems will enable the reliable monitoring of a variety of environments for both civil and military applications. In this paper, we look at communication protocols, which can have signicant impact on the overall energy dissipation of these networks. Based on our ndings that the conventional protocols of direct transmission, minimum-transmission-energy, multihop routing, and static clustering may not be optimal for sensor networks, we propose LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster base stations (cluster-heads) to evenly distribute the energy load among the sensors in the network. LEACH uses localized coordination to enable scalability and robustness for dynamic networks, and incorporates data fusion into the routing protocol to reduce the amount of information that must be transmitted to the base station. Simulations show that LEACH can achieve as much as a factor of 8 reduction in energy dissipation compared with conventional routing protocols. In addition, LEACH is able to distribute energy dissipation evenly throughout the sensors, doubling the useful system lifetime for the networks we simulated.

11,412 citations


"An improved energy aware distribute..." refers background in this paper

  • ...LEACH [11], LEACH-DT [15], HEED [18], etc....

    [...]

  • ...Multi-hop LEACH [22], EADC [23], EDUC [24], etc. are some such protocols....

    [...]

  • ...Most of the clustering protocols use single hop communication for communicating inside the cluster, as the distance between sensors within the cluster is relatively short, e.g. LEACH [11], LEACH-DT [15], HEED [18], etc. Researches proposed in literature report that multi-hop communication between * Corresponding author....

    [...]

  • ...The transmitter consumes energy in running the radio electronics circuitry and the transmit amplifier circuitry, whereas the receiver’s energy consumption is only in radio electronics part [11,20]....

    [...]

  • ...The LEACH protocol assumes one-hop communication between the nodes and to the base station....

    [...]

Journal ArticleDOI
TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Abstract: Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.

10,296 citations


"An improved energy aware distribute..." refers background or methods in this paper

  • ...A pioneer protocol available in this category is low-energy adaptive clustering hierarchy (LEACH) protocol [20]....

    [...]

  • ...This is because in case of transmission distance beyond threshold distance, the energy expense increases according to the fourth power of the distance [15,20]....

    [...]

  • ...The transmitter consumes energy in running the radio electronics circuitry and the transmit amplifier circuitry, whereas the receiver’s energy consumption is only in radio electronics part [11,20]....

    [...]

  • ...In the present work, the infinite compressibility model is used for data aggregation [7,20]....

    [...]

Journal ArticleDOI
TL;DR: It is proved that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks.
Abstract: Topology control in a sensor network balances load on sensor nodes and increases network scalability and lifetime. Clustering sensor nodes is an effective topology control approach. We propose a novel distributed clustering approach for long-lived ad hoc sensor networks. Our proposed approach does not make any assumptions about the presence of infrastructure or about node capabilities, other than the availability of multiple power levels in sensor nodes. We present a protocol, HEED (Hybrid Energy-Efficient Distributed clustering), that periodically selects cluster heads according to a hybrid of the node residual energy and a secondary parameter, such as node proximity to its neighbors or node degree. HEED terminates in O(1) iterations, incurs low message overhead, and achieves fairly uniform cluster head distribution across the network. We prove that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks. Simulation results demonstrate that our proposed approach is effective in prolonging the network lifetime and supporting scalable data aggregation.

4,889 citations


"An improved energy aware distribute..." refers background in this paper

  • ...The idea behind this assumption is that it is important that all the nodes of the network die out approximately at the same time in order to avoid early loss of sensing coverage, and likely partitioning of the network [8,11,15,18]....

    [...]

  • ...A hybrid energy-efficient distributed (HEED) clustering algorithm is proposed in reference 18, which select cluster head according to not only the node residual energy but also intra-cluster communication costs....

    [...]

  • ...LEACH [11], LEACH-DT [15], HEED [18], etc....

    [...]

  • ...Most of the clustering protocols use single hop communication for communicating inside the cluster, as the distance between sensors within the cluster is relatively short, e.g. LEACH [11], LEACH-DT [15], HEED [18], etc. Researches proposed in literature report that multi-hop communication between * Corresponding author....

    [...]

Proceedings ArticleDOI
09 Jul 2003
TL;DR: This paper proposes a distributed, randomized clustering algorithm to organize the sensors in a wireless sensor network into clusters, and extends this algorithm to generate a hierarchy of clusterheads and observes that the energy savings increase with the number of levels in the hierarchy.
Abstract: A wireless network consisting of a large number of small sensors with low-power transceivers can be an effective tool for gathering data in a variety of environments. The data collected by each sensor is communicated through the network to a single processing center that uses all reported data to determine characteristics of the environment or detect an event. The communication or message passing process must be designed to conserve the limited energy resources of the sensors. Clustering sensors into groups, so that sensors communicate information only to clusterheads and then the clusterheads communicate the aggregated information to the processing center, may save energy. In this paper, we propose a distributed, randomized clustering algorithm to organize the sensors in a wireless sensor network into clusters. We then extend this algorithm to generate a hierarchy of clusterheads and observe that the energy savings increase with the number of levels in the hierarchy. Results in stochastic geometry are used to derive solutions for the values of parameters of our algorithm that minimize the total energy spent in the network when all sensors report data through the clusterheads to the processing center.

1,935 citations


"An improved energy aware distribute..." refers background or methods in this paper

  • ...In such cases, multi-hop communication is successful in overcoming signal propagation difficulties [1,7]....

    [...]

  • ...In the present work, the infinite compressibility model is used for data aggregation [7,20]....

    [...]