scispace - formally typeset
Open AccessBook

An introduction to differentiable manifolds and Riemannian geometry

Reads0
Chats0
TLDR
In this article, the authors present a revised edition of one of the classic mathematics texts published in the last 25 years, which includes updated references and indexes and error corrections and will continue to serve as the standard text for students and professionals in the field.
Abstract
This is a revised printing of one of the classic mathematics texts published in the last 25 years. This revised edition includes updated references and indexes and error corrections and will continue to serve as the standard text for students and professionals in the field.Differential manifolds are the underlying objects of study in much of advanced calculus and analysis. Topics such as line and surface integrals, divergence and curl of vector fields, and Stoke's and Green's theorems find their most natural setting in manifold theory. Riemannian plane geometry can be visualized as the geometry on the surface of a sphere in which "lines" are taken to be great circle arcs.

read more

Citations
More filters
Book

A Mathematical Introduction to Robotic Manipulation

TL;DR: In this paper, the authors present a detailed overview of the history of multifingered hands and dextrous manipulation, and present a mathematical model for steerable and non-driveable hands.
MonographDOI

Planning Algorithms: Introductory Material

TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Proceedings ArticleDOI

Advances in kernel methods: support vector learning

TL;DR: Support vector machines for dynamic reconstruction of a chaotic system, Klaus-Robert Muller et al pairwise classification and support vector machines, Ulrich Kressel.
Book

Robot Modeling and Control

TL;DR: In this paper, the Jacobian is used to describe the relationship between rigid motions and homogeneous transformations, and a linear algebraic approach is proposed for vision-based control of dynamical systems.
Journal ArticleDOI

The Geometry of Algorithms with Orthogonality Constraints

TL;DR: The theory proposed here provides a taxonomy for numerical linear algebra algorithms that provide a top level mathematical view of previously unrelated algorithms and developers of new algorithms and perturbation theories will benefit from the theory.