scispace - formally typeset
Search or ask a question
Book

An Introduction to Digital Speech Processing

TL;DR: A comprehensive overview of digital speech processing that ranges from the basic nature of the speech signal, through a variety of methods of representing speech in digital form, to applications in voice communication and automatic synthesis and recognition of speech.
Abstract: Since even before the time of Alexander Graham Bell's revolutionary invention, engineers and scientists have studied the phenomenon of speech communication with an eye on creating more efficient and effective systems of human-to-human and human-to-machine communication. Starting in the 1960s, digital signal processing (DSP), assumed a central role in speech studies, and today DSP is the key to realizing the fruits of the knowledge that has been gained through decades of research. Concomitant advances in integrated circuit technology and computer architecture have aligned to create a technological environment with virtually limitless opportunities for innovation in speech communication applications. In this text, we highlight the central role of DSP techniques in modern speech communication research and applications. We present a comprehensive overview of digital speech processing that ranges from the basic nature of the speech signal, through a variety of methods of representing speech in digital form, to applications in voice communication and automatic synthesis and recognition of speech. The breadth of this subject does not allow us to discuss any aspect of speech processing to great depth; hence our goal is to provide a useful introduction to the wide range of important concepts that comprise the field of digital speech processing. A more comprehensive treatment will appear in the forthcoming book, Theory and Application of Digital Speech Processing [101].
Citations
More filters
Journal ArticleDOI

1,008 citations

Journal ArticleDOI
S. Biyiksiz1
01 Mar 1985
TL;DR: This book by Elliott and Rao is a valuable contribution to the general areas of signal processing and communications and can be used for a graduate level course in perhaps two ways.
Abstract: There has been a great deal of material in the area of discrete-time transforms that has been published in recent years. This book does an excellent job of presenting important aspects of such material in a clear manner. The book has 11 chapters and a very useful appendix. Seven of these chapters are essentially devoted to the Fourier series/transform, discrete Fourier transform, fast Fourier transform (FFT), and applications of the FFT in the area of spectral estimation. Chapters 8 through 10 deal with many other discrete-time transforms and algorithms to compute them. Of these transforms, the KarhunenLoeve, the discrete cosine, and the Walsh-Hadamard transform are perhaps the most well-known. A lucid discussion of number theoretic transforms i5 presented in Chapter 11. This reviewer feels that the authors have done a fine job of compiling the pertinent material and presenting it in a concise and clear manner. There are a number of problems at the end of each chapter, an appreciable number of which are challenging. The authors have included a comprehensive set of references at the end of the book. In brief, this book is a valuable contribution to the general areas of signal processing and communications. It can be used for a graduate level course in perhaps two ways. One would be to cover the first seven chapters in great detail. The other would be to cover the whole book by focussing on different topics in a selective manner. This book by Elliott and Rao is extremely useful to researchers/engineers who are working in the areas of signal processing and communications. It i s also an excellent reference book, and hence a valuable addition to one’s library

843 citations

Proceedings ArticleDOI
01 Dec 2013
TL;DR: This work finds that for basic action recognition and localization MBH features alone are enough for state-of-the-art performance, and for complex events it is found that SIFT and MFCC features provide complementary cues.
Abstract: Action recognition in uncontrolled video is an important and challenging computer vision problem. Recent progress in this area is due to new local features and models that capture spatio-temporal structure between local features, or human-object interactions. Instead of working towards more complex models, we focus on the low-level features and their encoding. We evaluate the use of Fisher vectors as an alternative to bag-of-word histograms to aggregate a small set of state-of-the-art low-level descriptors, in combination with linear classifiers. We present a large and varied set of evaluations, considering (i) classification of short actions in five datasets, (ii) localization of such actions in feature-length movies, and (iii) large-scale recognition of complex events. We find that for basic action recognition and localization MBH features alone are enough for state-of-the-art performance. For complex events we find that SIFT and MFCC features provide complementary cues. On all three problems we obtain state-of-the-art results, while using fewer features and less complex models.

451 citations


Cites methods from "An Introduction to Digital Speech P..."

  • ...We did, however, experiment with adding audio features: the mel-frequency cepstral coefficients (MFCC) and their first and second derivatives [32]....

    [...]

Posted Content
TL;DR: Generative Latent Optimization (GLO), a framework to train deep convolutional generators using simple reconstruction losses, and enjoys many of the desirable properties of GANs: synthesizing visually-appealing samples, interpolating meaningfully between samples, and performing linear arithmetic with noise vectors; all of this without the adversarial optimization scheme.
Abstract: Generative Adversarial Networks (GANs) have achieved remarkable results in the task of generating realistic natural images. In most successful applications, GAN models share two common aspects: solving a challenging saddle point optimization problem, interpreted as an adversarial game between a generator and a discriminator functions; and parameterizing the generator and the discriminator as deep convolutional neural networks. The goal of this paper is to disentangle the contribution of these two factors to the success of GANs. In particular, we introduce Generative Latent Optimization (GLO), a framework to train deep convolutional generators using simple reconstruction losses. Throughout a variety of experiments, we show that GLO enjoys many of the desirable properties of GANs: synthesizing visually-appealing samples, interpolating meaningfully between samples, and performing linear arithmetic with noise vectors; all of this without the adversarial optimization scheme.

254 citations

Journal ArticleDOI
TL;DR: This work proposes a model based on a sequence of atomic action units, termed "actoms," that are semantically meaningful and characteristic for the action that outperforms the current state of the art in temporal action localization, as well as baselines that localize actions with a sliding window method.
Abstract: We address the problem of localizing actions, such as opening a door, in hours of challenging video data. We propose a model based on a sequence of atomic action units, termed "actoms," that are semantically meaningful and characteristic for the action. Our actom sequence model (ASM) represents an action as a sequence of histograms of actom-anchored visual features, which can be seen as a temporally structured extension of the bag-of-features. Training requires the annotation of actoms for action examples. At test time, actoms are localized automatically based on a nonparametric model of the distribution of actoms, which also acts as a prior on an action's temporal structure. We present experimental results on two recent benchmarks for action localization "Coffee and Cigarettes" and the "DLSBP" dataset. We also adapt our approach to a classification-by-localization set-up and demonstrate its applicability on the challenging "Hollywood 2" dataset. We show that our ASM method outperforms the current state of the art in temporal action localization, as well as baselines that localize actions with a sliding window method.

248 citations

References
More filters
Journal ArticleDOI
TL;DR: This final installment of the paper considers the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now.
Abstract: In this final installment of the paper we consider the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now. To a considerable extent the continuous case can be obtained through a limiting process from the discrete case by dividing the continuum of messages and signals into a large but finite number of small regions and calculating the various parameters involved on a discrete basis. As the size of the regions is decreased these parameters in general approach as limits the proper values for the continuous case. There are, however, a few new effects that appear and also a general change of emphasis in the direction of specialization of the general results to particular cases.

65,425 citations

Journal ArticleDOI
Lawrence R. Rabiner1
01 Feb 1989
TL;DR: In this paper, the authors provide an overview of the basic theory of hidden Markov models (HMMs) as originated by L.E. Baum and T. Petrie (1966) and give practical details on methods of implementation of the theory along with a description of selected applications of HMMs to distinct problems in speech recognition.
Abstract: This tutorial provides an overview of the basic theory of hidden Markov models (HMMs) as originated by L.E. Baum and T. Petrie (1966) and gives practical details on methods of implementation of the theory along with a description of selected applications of the theory to distinct problems in speech recognition. Results from a number of original sources are combined to provide a single source of acquiring the background required to pursue further this area of research. The author first reviews the theory of discrete Markov chains and shows how the concept of hidden states, where the observation is a probabilistic function of the state, can be used effectively. The theory is illustrated with two simple examples, namely coin-tossing, and the classic balls-in-urns system. Three fundamental problems of HMMs are noted and several practical techniques for solving these problems are given. The various types of HMMs that have been studied, including ergodic as well as left-right models, are described. >

21,819 citations

Journal Article
TL;DR: The Mathematical Theory of Communication (MTOC) as discussed by the authors was originally published as a paper on communication theory more than fifty years ago and has since gone through four hardcover and sixteen paperback printings.
Abstract: Scientific knowledge grows at a phenomenal pace--but few books have had as lasting an impact or played as important a role in our modern world as The Mathematical Theory of Communication, published originally as a paper on communication theory more than fifty years ago. Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.

15,525 citations

Book
01 Jan 1989
TL;DR: In this paper, the authors provide a thorough treatment of the fundamental theorems and properties of discrete-time linear systems, filtering, sampling, and discrete time Fourier analysis.
Abstract: For senior/graduate-level courses in Discrete-Time Signal Processing. THE definitive, authoritative text on DSP -- ideal for those with an introductory-level knowledge of signals and systems. Written by prominent, DSP pioneers, it provides thorough treatment of the fundamental theorems and properties of discrete-time linear systems, filtering, sampling, and discrete-time Fourier Analysis. By focusing on the general and universal concepts in discrete-time signal processing, it remains vital and relevant to the new challenges arising in the field --without limiting itself to specific technologies with relatively short life spans.

10,388 citations

Journal ArticleDOI
TL;DR: The theory of communication is extended to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message anddue to the nature of the final destination of the information.
Abstract: HE recent development of various methods of modulation such as PCM and PPM which exchange bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist1 and Hartley2 on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message and due to the nature of the final destination of the information. The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. Frequently the messages have meaning; that is they refer to or are correlated according to some system with certain physical or conceptual entities. These semantic aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual message is one selected from a set of possible messages. The system must be designed to operate for each possible selection, not just the one which will actually be chosen since this is unknown at the time of design. If the number of messages in the set is finite then this number or any monotonic function of this number can be regarded as a measure of the information produced when one message is chosen from the set, all choices being equally likely. As was pointed out by Hartley the most natural choice is the logarithmic function. Although this definition must be generalized considerably when we consider the influence of the statistics of the message and when we have a continuous range of messages, we will in all cases use an essentially logarithmic measure. The logarithmic measure is more convenient for various reasons:

10,281 citations